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Haemolytic uraemic syndrome (HUS) is defined
by the simultaneous occurrence of nonimmune
haemolytic anaemia, thrombocytopenia and acute
renal failure. This leads to the pathological lesion
termed thrombotic microangiopathy, which
mainly affects the kidney, as well as other
organs. HUS is associated with endothelial cell
injury and platelet activation, although the
underlying cause may differ. Most cases of HUS
are associated with gastrointestinal infection with
Shiga toxin-producing enterohaemorrhagic
Escherichia coli (EHEC) strains. Atypical HUS
(aHUS) is associated with complement dysregula-
tion due to mutations or autoantibodies. In this

review, we will describe the causes of HUS. In
addition, we will review the clinical, pathological,
haematological and biochemical features, epi-
demiology and pathogenetic mechanisms as well
as the biochemical, microbiological, immunologi-
cal and genetic investigations leading to diagno-
sis. Understanding the underlying mechanisms of
the different subtypes of HUS enables tailoring of
appropriate treatment and management. To date,
there is no specific treatment for EHEC-asso-
ciated HUS but patients benefit from supportive
care, whereas patients with aHUS are effectively
treated with anti-C5 antibody to prevent recur-
rences, both before and after renal transplanta-
tion.
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Introduction

Haemolytic uraemic syndrome (HUS) is character-
ized by the simultaneous development of non-
immune haemolytic anaemia, thrombocytopenia
and acute renal failure. The main causes of HUS
are Shiga toxin-producing Escherichia coli (STEC)
also known as enterohaemorrhagic E. coli (EHEC),
in which patients usually present with a gastroin-
testinal prodrome, and complement-mediated dis-
ease [atypical HUS (aHUS)] associated with
mutations in genes encoding complement factors
or autoantibodies. Less common causes are other
infections, other genetic causes (i.e. not affecting
the complement system), malignancies, drugs,
transplantation, pregnancy or malignant hyperten-
sion. The clinical presentation and renal pathology
may be similar, regardless of the primary cause.
Patient investigation should therefore be geared
towards defining the aetiology, as treatment strate-
gies may differ based on the underlying disease
pathogenesis.

In this review, we will define the clinical and
laboratory features of HUS, as well as disease
epidemiology and pathology, and describe aspects

of the disease pathogenesis. We will provide a
clinical investigation protocol, based on the known
aetiologies of HUS, designed to achieve an appro-
priate diagnosis and thus suitable treatment. The
prognosis of HUS, in terms of patient morbidity
and mortality, is largely based on the underlying
cause and the provision of appropriate treatment.
Studies in recent years have generated new
insights into the pathogenesis of the various forms
of HUS, which will be highlighted here, as these
scientific advances provide the background for
novel therapies.

Classification and clinical features of HUS

Haemolytic uraemic syndrome is classified as post-
infectious, complement-mediated, which may be
hereditary and/or autoimmune, or associated with
other co-existing conditions such as pregnancy,
human immunodeficiency virus (HIV) infection,
transplantation (bone marrow and solid organ),
malignancy, autoimmune diseases, drugs, malig-
nant hypertension as well as other more unusual
associations, some of which are hereditary
(Table 1). There is also some degree of overlap
between aetiologies; for example, pregnancy-
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Table 1 Classification of haemolytic uraemic syndrome (HUS) based on aetiology

Aetiology Cause and features Comment Reference

Specific

infectious

agent

Shiga

toxin-producing

bacteria

Enterohaemorrhagic

Escherichia coli (EHEC)

Most prevalent serotypes:

O157, O26, O104, O111,

O103, O145, O121, O45

[230]

Shigella dysenteriae type 1 [231]

Citrobacter freundii [232]

Streptococcus

pneumoniae

Neuraminidase producing [193]

Influenza A H1N1 Neuraminidase producing

(possible explanation)

[192]

Enteroviruses Coxsackie A and B, Echo Unclear association [233]

HIV [234]

Pseudomonas

aeruginosa

Neuraminidase producing

(possible explanation)

[235]

Complement

dysregulation

Genetic Mutations in genes encoding

for factor H, factor I, MCP, C3,

factor B, clusterin,

thrombomodulin

Resulting in dysregulated

complement activation via the

alternative pathway

[55, 154]

Rearrangements or deletions

in genes encoding

complement factor H-related

proteins

Associated with antibodies to

factor H

[156]

Factor H CFH-H3 and MCP

ggaac risk haplotypes

[156, 161]

Acquired Anti-factor H antibodies Associated with genetic

rearrangements or deletions

in factor H-related proteins

[169]

Monoclonal gammopathy [236]

Mutations in

diacylglycerol

kinase-e (DGKE)

Loss-of-function recessive

mutations

[32]

Autoimmune Systemic lupus

erythematosus

[237]

Anti-phospholipid

syndrome

[238]

Scleroderma [239]

Pregnancy related HELLP syndrome May be associated with

complement dysregulation

[240]

Postpartum [240]

Transplantation Solid organ [241]

Bone marrow [242]

CMV viraemia [243]
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associated HUS and post-transplant HUS may be
associated with complement mutations [1, 2].
Patients with HUS, regardless of aetiology, present
with pallor, signs and symptoms of kidney failure,
possible jaundice and/or bleeding and purpura.

EHEC-associated HUS

The most common cause of HUS is gastrointestinal
infection with EHEC. EHEC infection was first
associated with haemorrhagic colitis during an
outbreak in the USA in 1982 [3] and at approxi-
mately the same time was associated with HUS in
sporadic cases [4]. EHEC-associated HUS may
occur in larger or smaller outbreaks [5–10] or in
sporadic cases, and typically presents as haemo-
lytic anaemia, thrombocytopenia and acute renal
failure developing after gastroenteritis, within 2–
12 days after the debut of diarrhoea, which may
manifest as haemorrhagic colitis with bloody diar-
rhoea. Approximately 15% of cases of EHEC-
associated gastroenteritis will develop HUS [11],
although the gastroenteritis itself may be very
severe and cause morbidity (rectal prolapse, colo-
nic gangrene or perforation) and even mortality
[12]. The use of antibiotics and antimotility agents

during the gastrointestinal phase of infection may
increase the risk of developing HUS [13, 14].
Furthermore, young children (<5 years) and the
elderly are more prone to develop HUS [11, 15]
although HUS developed mostly in middle-aged
women during the more recent large German
outbreak of EHEC in 2011 [16].

Patients typically present with acute pallor and
symptoms of renal failure (oedema, nausea and
emesis, oliguria and/or high blood pressure). In
addition to renal failure, extra-renal manifesta-
tions may occur including cardiac, neurological,
respiratory and pancreatic involvement [17–21] as
well as elevated liver function tests. Neurological
symptoms may vary from mild jerks to severe coma
or stroke in approximately 30% of cases and are
associated with a worse outcome. Other factors
related to a worse outcome are leukocytosis [22,
23] and low platelet counts [22, 24]. EHEC-
associated HUS usually does not recur.

aHUS

aHUS may be sporadic or familial and is associated
with an underlying dysregulation of the alternative

Table 1 (Continued )

Aetiology Cause and features Comment Reference

Malignancy Cancer

chemotherapy

Mitomycin, cisplatin,

bleomycin

[244]

Ionizing radiation [245]

Drugs Quinine [244]

Calcineurin

inhibitors

Also in combination with

everolimus

[244]

Oral contraceptives [244]

Antiplatelet

agents

Clopidogrel, ticlopidine [244]

VEGF inhibitors [246]

Malignant

hypertension

[247]

Cobalamin

metabolism

Cobalamin type C MMACHC

mutations, methylmalonic

aciduria and homocystinuria

[248]

Denys–Drash

syndrome

WT1 mutations [249]

Unknown May be familial [36]

MCP,membrane cofactor protein;HELLP, haemolysis, elevated liver enzymes, lowplatelets; VEGF, vascular endothelial growth
factor; CMV, cytomegalovirus; MMACHC,methylmalonic aciduria and homocystinuria, cblC type; WT, Wilm’s tumour.
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pathway of complement. The complement abnor-
malitymay be amutation, genetic rearrangement or
deletion in a gene encoding a complement factor, or
the presence of a homozygous complement gene
haplotype or of an autoantibody to complement
regulator factor H. The complement abnormality
itself is not sufficient for development of disease as
unaffected family members of patients with aHUS
maycarry thesamegenetic aberration. Patientsmay
present during childhood or adulthood, and epi-
sodes may be triggered by infections, transplants or
pregnancy [1, 25]. Recurrences triggered by infec-
tions are not associated with one specific pathogen.
The preceding infection may manifest with diar-
rhoea, and thus, some patients may present in a
similar manner to patients with EHEC-associated
HUS; this represents a clinical challenge, although
theonsetofaHUSisgenerally lessabruptthanthatof
EHEC-associated HUS. The course of disease is
characterized by recurring episodes of acute disease
ultimately leading to end-stage renal failure,
although terminal renal failure may already occur
at presentation. The disease may recur after trans-
plantation.

Extra-renal manifestations may also occur and are,
in part, secondary to vascular injury induced by
complement activation. These include digital gan-
grene, cerebral or peripheral vessel stenosis, oph-
thalmological and neurological involvement as well
aspulmonaryandpancreaticcomplications[26–29].

Streptococcus pneumoniae-associated HUS

Haemolytic uraemic syndrome occurring during
pneumococcal infection manifests simultaneously
with pneumonia and in more severe cases sepsis,
meningitis, hepatocellular injury and/or peritoni-
tis [30]. Patients may be severely ill, exhibiting
multi-organ involvement and possibly dissemi-
nated intravascular coagulation (DIC) [31].

Diacylglycerol kinase-e (DGKE)-associated HUS

A rare but distinctive subtype of HUS is associated
with mutations in the DGKE gene. Patients usually
present with HUS as infants with hypertension,
haematuria and proteinuria eventually leading to
renal failure [32, 33].

Epidemiology

EHEC-associated HUS occurs primarily in chil-
dren younger than 5 years of age and in the

elderly [34, 35]. After an incubation period of
4–7 days, EHEC-infected patients develop diar-
rhoea [36] and approximately 15% of cases
develop HUS [11] within an additional 2–10 days.
Patients may be infected by intake of contami-
nated food including raw, processed or under-
cooked meat, vegetables, unpasteurized juice or
milk products, cross-contamination of food prod-
ucts and utensils, intake of contaminated water,
even from swimming pools [5, 37–42], person-to-
person transmission [43, 44] or contact with
animals bearing the strain [45]. Transmission
occurs more often in summer [46], requires a
very low number of bacterial organisms [47] and
occurs in outbreaks or sporadically. Very large
outbreaks have occurred in Japan [48] and in
Germany [16], but smaller outbreaks have been
reported in numerous countries [5–10]. In coun-
tries in which intake of raw meat is higher, EHEC
infection is endemic and HUS rates are thus
higher, such as in Argentina [49]. The incidence
in Argentina has been reported to be as high as
12.2 cases per 100 000 children younger than
5 years of age [50]. It is difficult to assess the
annual incidence of EHEC-associated HUS, but
overall rates corresponding to two per 100 000
for all age groups have been reported and up to
six per 100 000 in children younger than 5 years
of age [51].

Many strains of E. coli have been associated with
clinical disease including sorbitol non-fermenting
and fermenting E. coli O157 as well as E. coli
O26, O103, O111 and O145. E. coli O104:H4 was
the specific strain isolated during the large Ger-
man outbreak in 2011. This is a hybrid strain
bearing characteristics of both EHEC strains
(producing Shiga toxin) and enteroaggregative
E. coli (EAEC) strains (with regard to the pattern
of intestinal colonization) [52].

aHUS is an ultra-rare disease with an estimated
incidence that is most probably between 0.5 and 2
per million [53, 54]. Onset may occur at any age
but is more frequent in childhood [55] particularly
before the age of 2 years [56]. Onset before
6 months of age is highly indicative of aHUS as
EHEC-associated HUS is uncommon in this age
group. The onset is usually triggered by a febrile
infection in the respiratory or gastrointestinal
tract. Patients who do not develop end-stage renal
failure during the first episode tend to relapse, and
the disease may affect several members of the same
family [57].
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Laboratory diagnosis of HUS

HUS is defined as the simultaneous occurrence of
haemolysis, thrombocytopenia and acute renal
failure. The initial laboratory investigation required
to make a diagnosis of HUS should include haema-
tological, biochemical and microbiological assays
for the detection of haemolytic anaemia, thrombo-
cytopenia, renal failure and EHEC infection (see
Table 2). Biochemical abnormalities may be
related to intestinal and renal losses of proteins
and electrolytes, as well as extra-renal affection of
the liver and pancreas. Urinalysis will reveal

glomerular injury with casts, haematuria and
proteinuria. Blood cultures are usually negative,
except for cases of invasive S. pneumoniae-asso-
ciated HUS. The clinical investigation for deter-
mining the underlying cause of HUS is described
below.

Pathology

The pathological lesion observed in the kidneys of
patients with HUS is termed thrombotic microan-
giopathy (TMA). Patients seldom undergo renal
biopsies during the acute phase of disease due to

Table 2 Laboratory diagnosis of haemolytic uraemic syndrome (HUS)

Analysis Feature Assay

Haematological Haemolysis Lactic dehydrogenase

Reticulocyte count

Haptoglobin

Unconjugated bilirubin

Blood smear (red blood cell fragmentation)

Direct antiglobulin test (also known as Coombs test)

Thrombocytopenia Platelet count

Leukocytosis, neutrophiliaa Neutrophil count

Normal coagulation Coagulation screenb

Biochemical Renal failure Elevated serum creatinine and urea

Hyperkalaemia

Acidosis

Gastrointestinal losses Hyponatraemiaa

Hypoalbuminaemiaa,c

Pancreatic effects Hyperglycaemiaa

Hepatic effects Elevated LFTsa

Microbiological Gastrointestinal infection Faeces: culture, or PCR for EHEC genes (stx, eae), or ELISA for

free Shiga toxin

Serology: ELISA for EHEC virulence factors (serotype-specific

lipopolysaccharide, Shiga toxin or adhesins) [250, 251]

Bacteraemia Blood culture, spinal fluidd

Urinary tract infection Urine culturee

Streptococcus pneumoniae infection T antigen lectin binding assay

Urinalysis Haematuria Dip stick, microscopy, chemistry

Proteinuria

Glomerular injury

EHEC, enterohaemorrhagic Escherichia coli; ELISA, enzyme-linked immunosorbent assay; LFT, liver function test; T
antigen, Thomsen–Friedenreich antigen.
aAssociated with EHEC-associated HUS. bTo rule out consumption of coagulation factors, although fibrin split products
may be elevated. cLow levels of serum proteins may be due to intestinal and urinary losses. dUsually negative in all forms
of HUS except for invasive S. pneumoniae infection. eEHEC is usually detected in faeces but may also be isolated from
urine [252].
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ongoing thrombocytopenia. Our knowledge of renal
pathology is therefore obtained either from post-
mortem specimens or from biopsies carried out in
more severe cases, or in those patients in whom the
diagnosis is unclear. TMA is characterized by
specific lesions in glomeruli including micro-
thrombi and microaneurysms in glomerular capil-
laries. Fragmented red blood cells may be visible in
the lumina. The capillary endothelial cells are
swollen and detached from the basement mem-
brane. Ultramorphological examination reveals
subendothelial lucent flocculent material [58].
Mesangial expansion as well as mesangiolysis is
observed by light microscopy [58]. Similar lesions
are seen in arterioles and arteries of the renal
cortex consisting of thrombi and endothelial
detachment. The extensive vascular injury with
occluded vessels leads to reduced glomerular
filtration and ischaemic damage resulting in renal
cortical necrosis in the most severe cases. Thus,
the entire nephron is affected and tubular damage,
particularly in EHEC-associated HUS, is a promi-
nent feature [59].

Chronic renal changes, particularly associated with
aHUS, include the appearance of double contours of
capillary walls withmesangial interposition and the
formation of new basement membrane (the latter
visible by electron microscopy) [60]. Myo-intimal
concentric proliferation presenting an ‘onion-skin’
appearance in arterioles and arteries is usually
associated with severe hypertension [58].

The intestinal lesion seen during EHEC-associated
HUS consists of erosions and ulcerations, leading
to transmural perforation in severe cases, oedema,
hyperaemia, inflammatory infiltrates and haemor-
rhage, fibrin exudates, vascular thrombosis, muco-
sal or mural necrosis and pseudomembrane
formation [61, 62].

Current understanding of the pathophysiology of HUS

EHEC-associated HUS

Shiga toxin-producing EHEC strains colonize the
intestine after ingestion. Bacteria initially colonize
the terminal ileum [63] followed by specific attach-
ment to colonic enterocytes generating a so-called
attaching and effacing lesion [64]. Colonization is
facilitated by an interaction with the intestinal
microflora, in a process termed quorum sensing,
enabling bacterial communication between strains
via genetically encoded mediators [65, 66]. The
same mechanism also enables communication

with host-derived hormones, such as catecholami-
nes, thus promoting adhesion and virulence and
the release of Shiga toxin in the intestine [67].

There is no bacteraemia during EHEC infection as
the strain is non-invasive [68]. Thus, toxin released
into the intestine must translocate via enterocytes,
or between the cells, to gain access to the circulation
and thus reach its target organs (mainly the kidneys
and brain). The presence of toxin in the kidneys of
patients and in in vivomodels [69–71] suggests that
the toxin is transferred from the intestine to the
kidneys. Themanner by which the toxin is taken up
from the intestine in vivo is, as yet, unknown but
may include binding of the toxin’s pentameric B
subunit to its receptor, globotriaosylceramide (Gb3
or CD77), on intestinal epithelial cells or Paneth
cells [72, 73] and holotoxin uptake, or paracellu-
larly, in a process enhanced by counter-migration of
neutrophils towards the intestinal lumen [74].
Alternatively, the toxin may be taken up by
macropinocytosis [75] or within bacterial outer
membrane vesicles [76]. Intracellularly, Shiga toxin
induces cell death by binding of its enzymatically
active A subunit to ribosomal RNA and inhibition of
protein synthesis [77]. The toxin induces intestinal
cell apoptosis [62] and profound intestinal inflam-
mation [78], which may further promote bacterial
colonization and toxin release by means of quorum
sensing [66]. The immune response to pathogen-
associated molecular patterns (PAMPs) primed in
the intestine is also essential for elimination of the
organism [79, 80].

An antibody response is generated upon intestinal
colonization by EHEC. Patients develop antibodies
to the serotype-specific lipopolysaccharide (LPS),
Shiga toxin and intestinal adhesins. It is unclear
whether these antibodies are protective, but the
lower incidence of EHEC infections in countries
endemic for enteropathogenic E. coli (EPEC) infec-
tions (intestinal strains that express certain adhe-
sins that are homologous to those expressed by
EHEC) would suggest a degree of antibody-
mediated protection [81], a finding confirmed by
in vivo studies [82].

During haemorrhagic colitis, Shiga toxin, which
has translocated across the intestinal mucosal
barrier, will gain access to the circulation. This
may be achieved by binding to and injury of
intestinal endothelial cells [83]. Free toxin in the
bloodstream is minimal [84, 85], but the toxin
binds to neutrophils, monocytes, platelets and red
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blood cells [86–91] demonstrated in vivo on plate-
lets and leukocytes, and thus circulates in the
bloodstream. Elevated neutrophil counts are asso-
ciated with a worse prognosis [22, 23] possibly due
to the enhanced ability to transfer toxin as well as
the destructive properties associated with pro-
teases released by activated neutrophils. Shiga
toxin bound to blood cells may be taken up by the
cells [89] although most blood cells are resistant to
the cytotoxic effects of the toxin. Cells that lack
protein synthesis, such as platelets and red blood
cells, would not be negatively affected by the toxin,
but even leucocytes appear to be resistant to the
cytotoxic effects. On the contrary, platelets and
leucocytes are activated by the toxin [92].

Toxin may be released from blood cells within
microvesicles [71]. These microvesicles, originating
from host blood cells and bearing contents of the
parent cell, plusShiga toxin, evade thehost immune
responseandare takenupbykidneyglomerularand
peritubular capillary endothelial cells. Within the
renal cells, the toxin is released, and the enzymat-
ically active A subunit is transported in a retrograde
manner to ribosomal RNA [71]. Thus, blood cell-
derivedmicrovesicles appear to be important for the
transfer of toxin from blood cells to the target organ
cell (Fig. 1). The toxin thereby reaches the glomeru-
lar endothelial cell and the tubular epithelial cell
(microvesicles pass through the tubular basement

membrane) inwhich ithasbeenshown to induce cell
death [59, 71, 93].

Blood cell-derived microvesicles originating from
platelets, monocytes, neutrophils and red blood
cells were shown to be elevated in acute blood
samples from patients with EHEC-associated HUS
[86, 92, 94, 95], decreasing after recovery to
normal values. Microvesicles expose phos-
phatidylserine as well as tissue factor [92], both
of which promote thrombosis.

The main manifestations of HUS are acute haemo-
lytic anaemia, thrombocytopenia and renal failure.
These features can be explained by the effects of
Shiga toxin, in conjunction with other bacterial
virulence factors, and the host response, as shown
schematically in Fig. 2 (for review see [78]).

Haemolysis
Red blood cell fragmentation is a major feature of
the haemolytic process during HUS. Schistocytes
are seen on blood smears, sometimes in the form of
helmet cells. The fragmentation has been attribu-
ted to mechanical breakdown of red blood cells in
capillaries partially occluded by microthrombi [96].
Alternatively, red blood cells may fragment due to
oxidative damage, as alterations in glutathione
metabolism were found in one study in patients
with HUS [97].

Microvesicle release from 
blood cell (e.g. platelet)

Stx is delivered  to the 
target organ 

(e.g. kidney endothelial cell)

Ca2+

Gb3
Stx

Platelet

Fig. 1 Schematic representation of Shiga toxin transfer from the circulation to the kidney. Suggested sequence of events
during Shiga toxin transfer presented within a blood vessel. Once within the bloodstream, Shiga toxin binds to its receptor
on blood cells, for example globotriaosylceramide (Gb3) on platelets. The toxin is internalized and the activated blood cell
releases microvesicles containing the toxin. The blood cell-derived microvesicles circulate and thus reach the target organ
where they are taken up by endothelial cells. In the kidney, this has been shown to occur within glomerular and peritubular
capillary endothelial cells. Toxin is released from microvesicles within the cells. Stx, Shiga toxin.
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EHEC
A/E lesion

Stx

Translocation 
of Stx

OMVs

Gut

Proximal convoluted tubule

Peritubular capillary

Glomerular capillary

Tubular 
epithelial cells

Thrombosis

Damaged cells Activated
platelets

Endothelial damage

Hemolysis

Complement
activation

Complement
dysregulation

Platelet
microvesicles

Trigger

Platelet-leukocyte
aggregation

Microvesicles

Microvesicles

Microvesicles

Atypical HUS EHEC-HUS

schistocytes

C3

C3b

Bb

C3b

Bb

3b

C5b

C5b

C7

C7

C8

C8C9
C9

C6

C6

MAC

RBC

Gb3

Gb3

Gb3

Gb3

Gb3

Fig. 2 Pathophysiology of enterohaemorrhagic Escherichia coli (EHEC)-associated haemolytic uraemic syndrome (HUS)
and atypical HUS (aHUS). EHEC-associated HUS is presented in all panels except the lower left panel, which shows the
proposed pathophysiology of aHUS. EHEC colonizes the gut, mainly the colon, forming intimate attaching and effacing
lesions and releasing Shiga toxin. After injury to the intestinal epithelium and endothelium, the toxin gains access to the
circulation and binds to blood cells on which it circulates. Binding to platelets and leucocytes activates these cells. Toxin
released in the circulation or within microvesicles undergoes endocytosis in glomerular and peritubular capillary endothelial
cells damaging these cells. The combination of activated platelets and damaged endothelium induces thrombosis. Red blood
cells are fragmented mechanically on microthrombi in combination with complement-induced haemolysis. Microvesicles
transfer toxin between cells, as well as via the basement membrane to the tubular epithelium, thus affecting the entire
nephron. In aHUS, uninhibited complement activation on the host endothelium and platelets induces cell injury and a
prothrombotic state with fragmentation of red blood cells. Complement is deposited on the cells, and platelet-derived
microvesicles are released into the circulation. A/E lesion, attaching and effacing lesion; Stx, Shiga toxin; OMV, outer
membrane vesicle; RBC, red blood cell.
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Shiga toxin binds to red blood cells via the Gb3
receptor known as the Pk antigen (an antigenwithin
the P1PK blood group system) and present on most
red blood cells [87]. Our group recently showed that
Shiga toxin induced haemolysis and that this pro-
cess involved complement deposition on red blood
cells [86]. This is of interest because complement
activation on red blood cells is known to induce
haemolysis [98]. Patients with EHEC-associated
HUS were shown to have complement activation
on their red blood cells as well as circulating red
blood cell-derived microvesicles coated with C3 and
C9 [86]. Thus, as deposition of complement on red
blood cells occurs during EHEC-associated HUS, it
seems plausible that its presence contributes to the
haemolytic process. The role of complement in
EHEC-associated HUS will be reviewed below.

Shiga toxin was recently shown to modulate ery-
throid maturation in vitro [99]. Patients with
EHEC-associated HUS exhibit reticulocytosis dur-
ing the acute phase of disease, i.e. bone marrow
erthryoid maturation does not seem to be affected,
and thus, this finding may not have clinical bear-
ing.

Thrombocytopenia
Low platelet counts in HUS are the result of
platelet activation and deposition of aggregates in
microthrombi along the damaged vascular wall.
Platelet activation occurs due to exposure of the
subendothelium secondary to toxin-induced
endothelial cell damage whereby platelets interact
with fibrinogen, collagen and von Willebrand
factor to form aggregates [100]. In addition,
platelets are activated directly by Shiga toxin
and LPS [89, 92, 101] and by cytokines released
by activated monocytes or endothelial cells [102,
103]. Platelets derived from patients with HUS
show evidence of activation as they are degranu-
lated [104], and have reduced intracellular b-
thromboglobulin levels and an impaired response
to aggregation [105]. O157 LPS and Shiga toxin
can activate platelets [89, 106], and platelet-
derived microvesicles are released in vitro by
stimulation with these bacterial virulence factors
[92, 107], and in vivo in patients, reflecting the
degree of platelet activation.

Platelets have a role in the inflammatory process
by interacting and forming complexes with leuco-
cytes [92] and by releasing proinflammatory
cytokines [108, 109]. Platelets play a most impor-
tant role in the formation of microangiopathic

lesions during HUS, and low platelet counts are
correlated with the degree of renal dysfunction [22,
24].

The prothrombotic process
The thrombotic events that occur during EHEC-
associated HUS are secondary to endothelial cell
injury, enhanced platelet activation on the suben-
dothelium, thrombin generation, tissue factor
release, elevated levels of microvesicles in the
circulation and decreased fibrinolysis. Coagulation
abnormalities occur during the gastrointestinal
phase of infection, preceding the development of
HUS. Children who later developed HUS exhibited
elevated plasma concentrations of prothrombin
fragment 1 + 2, tissue plasminogen activator
(t-PA) antigen, t-PA–plasminogen activator inhibi-
tor type 1 (PAI-1) complex and D-dimer [110].
Prothrombotic markers were elevated during HUS
and fibrinolysis was inhibited. Likewise, tissue
factor levels were shown to be high [111] and
platelet–leucocyte complexes that expressed tissue
factor were elevated in patient samples [92].
Microvesicles released from monocytes and plate-
lets expressed tissue factor as well as phos-
phatidylserine [92], both of which contribute to
thrombosis. These findings could be reproduced
in vitro by stimulation of endothelial cells with
Shiga toxin [112], and whole blood with Shiga
toxin and O157 LPS, suggesting that the toxin
together with LPS induces the prothrombotic state
via damage to the endothelium, activation of
platelets and release of tissue factor and
microvesicles [92].

Renal failure
The pathogenetic mechanisms leading to acute
renal failure during EHEC-associated HUS are
associated with prothrombotic vascular injury, as
outlined above, triggering the formation of occlud-
ing microthrombi in glomeruli, as well as acute
toxin-induced tubular injury [59, 113]. The toxin
itself reaches the kidney [69–71] affecting glomeru-
lar (endothelial cells, podocytes and mesangium)
and tubular cells [59, 114–116]. In addition, there
is activation and influx of neutrophils, correspond-
ing to the severity of renal failure [117, 118], and of
platelets within microthrombi [109]. Thus, multi-
ple cell types may release potent inflammatory
mediators and enzymes. Furthermore, cytokines,
chemokines, soluble adhesion molecules, growth
factors, cytokine receptors and acute-phase
response proteins are elevated in EHEC-associated
HUS patients [78, 119–130] and may contribute to
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the progression of renal damage particularly as
elevated cytokine levels have been demonstrated in
the urine of patients with HUS [121]. The chemo-
kine receptor CXCR4/CXCR7/stromal cell-derived
factor 1 pathway is also activated in vivo, and
in vitro by Shiga toxin, thus also contributing to
renal damage [131]. Finally, activation of the
complement system [132] may induce chemotaxis
and cytolysis and further contribute to the tissue
injury as described below.

Injury to the central nervous system
Central nervous system (CNS) affection carries a
worse prognosis for full recovery and is observed in
30–60% of patients [18, 133]. The pathogenetic
mechanisms involved are similar to those
described in the kidney with toxin binding to
neurons and endothelial cells in the CNS [134],
damage to the blood–brain barrier and the induc-
tion of multiple inflammatory mediators (for review,
see [78]).

Complement activation during EHEC-associated
HUS
There is evidence for complement activation during
EHEC-associated HUS, primarily via the alterna-
tive pathway. Patients have been found to have low
plasma levels of C3 [135, 136] and elevated levels
of complement degradation products such as fac-
tors Bb, C3a and soluble C5b-9 [94, 137, 138].
Levels of factors Bb and C5b-9 correlated with the
presence of oliguria [137]. Circulating platelet- and
monocyte-derived microvesicles coated with C3
and C9 as well as C3 deposits on platelet–monocyte
aggregates were observed in paediatric HUS
patients during the acute phase of disease [94].
Likewise, C3 deposits were observed on red blood
cells, and red blood cell-derived microvesicles were
coated with both C3 and C9 [86]. C5b-9 deposits
were also found in the human kidney during
EHEC-associated HUS [139]. Thus, the extensive
endothelial injury and blood cell activation during
EHEC-associated HUS lead to secondary comple-
ment activation.

In vitro studies have shown that Shiga toxin
incubated with normal whole blood induced the
formation of leucocyte–platelet aggregates and the
release of platelet- and monocyte-derived
microvesicles coated with C3 and C9 deposits
[94]. Similarly, red blood cell-derived microvesicles
coated with C9 were demonstrated, in a process
dependent on activation of the alternative pathway
[86].

In vivo models using EHEC infection or Shiga toxin
and LPS have also confirmed the importance of the
alternative pathway for complement activation in
the kidneys. These studies demonstrated C5b-9
deposition in glomeruli when mice were infected
with EHEC [139], an effect inhibited by anti-C5
antibody. Similarly, complement deposits were
observed on podocytes, associated with their dys-
function, after mice were injected with Shiga toxin
and LPS; this effect was inhibited by a C3a receptor
antagonist [132]. Glomerular fibrinogen deposition
was decreased in EHEC-infected mice treated with
anti-C5 as well as C6-deficient mice [139] and
reduced in Shiga toxin/LPS-injected mice treated
with the C3a receptor antagonist [140], in which
platelet aggregates also decreased. This aspect is of
importance as circulating C3a and C5b-9 may
activate platelets [141, 142] and soluble C5b-9
enhances expression of tissue factor on the
endothelium [143].

The mannan-binding lectin (MBL) pathway of
complement activation is triggered by binding to
bacterial surface components. Although MBL defi-
ciency may predispose to infection, it does not
seem to predispose to EHEC-associated HUS [144].

Overactivation of the complement system on host
renal and blood cells may have an injurious effect.
Shiga toxin and other EHEC virulence factors such
as LPS are capable of activating complement,
mainly via the alternative pathway. Complement
activation most probably contributes to toxin-
induced cell injury and prothrombotic reactions
in concert with other harmful effects induced by
the bacteria and the host response.

Atypical HUS

Atypical HUS is primarily mediated by dysfunc-
tional complement regulation resulting in comple-
ment activation on host cells via the alternative
pathway [57]. Complement deposition occurs in an
uninhibited manner on the endothelium and on
platelets [94, 145, 146]. A majority of patients with
aHUS have heterozygous mutations in complement
components, either loss-of-function mutations in
regulators such as factor H [147], factor I [148],
membrane cofactor protein (MCP/CD46) [149] or
thrombomodulin [150] or gain-of-function muta-
tions in C3 [151, 152] or factor B [153]. One
pedigree has been described with a heterozygous
mutation in clusterin, which affects regulation of
the terminal complement pathway [154]. In
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addition, patients may have hybrid genes between
factor H and factor H-related proteins [155], re-
arrangements or homozygous deletions in factor
H-related proteins (mostly factor H-related proteins
1 and 3), which are often associated with antibod-
ies to factor H [156–158]. These deletions are also
prevalent in unaffected individuals in the general
population, but the presence of anti-factor H
antibodies predisposes the individual to aHUS.

Certain polymorphisms in the factor H, MCP or
factor H-related protein 1 genes have been ascribed
a risk profile [157, 159, 160], and the constellation
of certain haplotypes in the factor H [156] or the
MCP [161] genes is associated with enhanced risk
of developing aHUS. The presence of risk haplo-
types in both the factor H and the MCP genes
increases the penetrance of disease amongst muta-
tion carriers [162].

Most, but not all, studied mutation phenotypes
lead to activation of complement in vitro. A disease-
associated complement mutation or antibodies to
factor H are found in about 70% of patients [57]. A
small percentage of patients (3–5%) may have
mutations in more than one complement gene
[162]. aHUS occurring in more than one family
member is associated with 20–30% of cases, and

this is due to variable penetrance, except for rare
cases with homozygous mutations, in which the
disease penetrance is high [57]. The complement
gene products reported to be associated with aHUS
are depicted in Fig. 3, and their known functions
are summarized in Table 3. The mechanism by
which cell injury occurs on the endothelium and
platelets is shown in Fig. 2.

Factor H
Factor H mutations account for approximately 30%
of aHUS complement mutations. Factor H is the
main regulator of the alterative pathway function-
ing both in the fluid phase and on cell surfaces. It is
composed of 20 short consensus repeats and the
gene is composed of 23 exons. The N-terminus of
the protein is associated with cofactor activity for
factor I and decay of the C3 convertase, whereas
the host recognition properties are localized at the
C-terminus (Table 3) [163]. Many factor H muta-
tions have been described and the majority of the
aHUS-associated mutations are localized at the C-
terminus [156]. aHUS-associated mutations are
listed in a database available online (http://
www.fh-hus.org/). Patients with factor H muta-
tions do not necessarily have low factor H or C3
levels, although rare cases of homozygous muta-
tions in factor H usually do [146, 164]. Studies

Factor B

C3H2O

FD

Tick over

C3H2OBb

C3

C3b

C3a
Factor B

FD

C3bBb
C3bBbC3b

C5

C5a

C5b

MAC 
(C5b-9)

C5b, C6, C7, C8 and C9

Cell lysis

Target cell

Factor I, 
factor H, 

MCP

ClusterinFactor H

Factor H-related protein 1 

Factor H, MCP

Thrombomodulin

Amplification

Fig. 3 Complement activation via the alternative pathway on cells and mutations in atypical haemolytic uraemic syndrome
(aHUS). The figure shows alternative pathway activation, from the low-grade ‘tick-over’ binding of C3H2O to factor B in the
presence of factor D (FD) to formation of the definitive C3 convertase (C3bBb). The C3 convertase continuously cleaves C3
via the amplification loop, when uninhibited, and proceeds to form the C5 convertase (C3bBbC3b) by binding more C3b. C5
convertase cleaves C5 and thus contributes to formation of the membrane attack complex (MAC or C5b-9). Complement
regulators that are mutated or deleted in aHUS are shown in red; complement proteins contributing to the formation of the
C3 convertase and mutated in aHUS are shown in purple. A preliminary version of this figure appeared in the Ph.D. thesis of
I. Arvidsson.
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have shown that mutant variants of factor H are
incapable of protecting endothelial cells [145] and
platelets [165] from complement activation via the
alternative pathway, thus explaining the endothe-
lial cell injury and platelet activation occurring in
aHUS cases with these mutations. Serum comple-
ment deposition on endothelial cells may be used
as an assay to monitor disease activity [166].
Furthermore, mutant factor H enables complement
activation to occur on platelets and the release of
tissue factor- and phosphatidylserine-expressing
platelet microvesicles contributing to the pro-
thrombotic process [165].

The role of factor H in aHUS was demonstrated
in vivo in a mouse model lacking the C-terminus
five short consensus repeats of factor H (FHD16-20
mice) that developed spontaneous HUS [167]. Mice
that were, in addition, C5-deficient were protected
from this phenotype, demonstrating the impor-
tance of the terminal complement cascade for the
development of renal lesions in thrombotic
microangiopathy [168].

Anti-factor H antibodies
In addition to factor H mutations that neutralize
the host cell recognition properties of the protein,
autoantibodies may have a similar effect [169]. The
antibodies are mostly, but not only, directed to the
C-terminal and can affect cell surface protection as
well as the interaction between factor H and C3
[170, 171]. Factor H antibodies account for approx-
imately 5–10% of aHUS cases. The level of anti-
bodies is related to disease activity and may affect
C3 levels as well [172]. Anti-factor H antibodies are
associated with rearrangements or deletions in
factor H-related proteins. Factor H-related protein
1 may have a regulatory function in the terminal
complement cascade [173], and thus, its deletion
or the presence of hybrid genes may promote
formation of the membrane attack complex
(MAC). Furthermore, hybrid genes may affect the
regulatory function of factor H [174] and thus
promote complement activation.

Factor I
Factor I mutations account for <10% of aHUS-
associated mutations. Factor I is encoded by a gene
consisting of 13 exons [175]. It is a serine protease
active in the fluid phase that, within the alternative
pathway, cleaves C3b to its inactive form iC3b in
the presence of the cofactors factor H, complement
receptor 1, MCP or von Willebrand factor [176].
Similarly, within the classical pathway, it cleaves

C4b in the presence of C4-binding protein, com-
plement receptor 1 or MCP [177]. Most aHUS-
associated mutations are located within the serine
protease domain. Mutations may affect protein
secretion or enzymatic function [178], but not all
mutations have been shown to affect protease
activity [179]. Factor I mutations in conjunction
with additional aHUS-associated mutations may
affect the patient phenotype [180].

MCP/CD46
Membrane cofactor protein is a membrane-bound
protein with an intracellular anchor, a transmem-
brane domain and four extracellular short consen-
sus repeats [181]. It functions as a cofactor for
factor I-mediated cleavage and inactivation of C3b
and C4b. The MCP gene is composed of 14 exons,
and heterozygous mutations, mostly localized in
the region encoding the extracellular domain, are
the cause of up to 15% of aHUS cases [149].
Mutations affect expression of the extracellular
domain, thereby binding to C3b and cofactor
activity [182]. Decreased MCP expression on the
cell surface can be detected by flow cytometry of
leucocytes [183].

C3
Mutations in C3 account for up to 10% of aHUS-
associated mutations. The gene is composed of 41
exons, and mutations may be localized throughout
the gene [151]. C3 levels are usually low. Mutations
affect binding to factor H, thus reducing its regu-
latory capacity, or enhance binding to factor B
resulting in a hyperfunctional C3 convertase and
complement deposition on endothelial cells and
platelets [151, 152, 184].

Factor B
The factor B gene is composed of 18 exons. Factor
B is cleaved in vivo into factors Ba and Bb, the
latter binding to C3b to form the C3 convertase.
Similar to C3 mutations, mutations in factor B may
result in a hyperfunctional C3 convertase [185] or a
C3 convertase resistant to decay by factor H [186].
However, not all mutations have been shown to
cause protein dysfunction in vitro [27, 186]. Only a
limited number of mutations in factor B have been
demonstrated in patients with aHUS to date and
these account for up to 4% of aHUS cases [187].

Thrombomodulin
Thrombomodulin mutations are rare in aHUS,
observed in approximately 3% of cases. The throm-
bomodulin gene is intron-depleted [188].
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Thrombomodulin is a transmembrane glycoprotein
expressed on vascular endothelial cells. It serves as
a cofactor for thrombin-mediated activation of
thrombin-activatable fibrinolysis inhibitor (TAFI)
to TAFIa. TAFIa inactivates C3a and C5a. In
addition, thrombomodulin binds to C3b and factor
H and enhances factor I-mediated inactivation of
C3b in the presence of factor H. Mutations were
shown to enhance complement activation by
diminishing these functions [150].

Clusterin
A heterozygous clusterin mutation has been
described in one family in which siblings were
affected by aHUS and poststreptococcal glomeru-
lonephritis [154]. The prevalence of mutations in
the clusterin gene is hard to assess, as it is not
assayed regularly. Clusterin regulates the forma-
tion of the terminal complement cascade MAC. The
mutant variant could not prevent assembly of the
MAC on platelets and red blood cells, thus pro-
moting platelet activation and haemolysis.

Mutations, gene rearrangements and auto-anti-
bodies are all predisposing factors for the develop-
ment of aHUS. However, family members of
patients with aHUS may carry the same mutation
without being affected. It is thus assumed that a
‘second hit’ is necessary to trigger aHUS such as
additional complement mutations or risk-asso-
ciated haplotypes, infection or pregnancy [57]
(Fig. 2). Once haemolysis is induced, heme is
released and may further activate the complement
system in the fluid phase and on cell surfaces
particularly in the setting of mutated complement
proteins [189].

An important aspect of aHUS is that disease recur-
rences occur in the presence of viable renal tissue.
Thus, haematological recurrences associated with
haemolysis and thrombocytopenia occur only in
patients with residual renal function and cease to
recur once terminal renal failure occurs. This may
indicate that an interaction between components of
renal tissue and the complement system could

Table 3 Complement proteins associated with atypical haemolytic uraemic syndrome (aHUS) and their function

Complement

protein Pathway

Soluble or

membrane

bound

Complement

factor or

regulator Function

Factor H Alternative Soluble Regulator • Cofactor for factor I in C3b cleavage
• Accelerates decay of the C3 convertase
• Host cell recognition

Factor H-related

protein 1

Terminal Soluble Regulator • Inhibits the C5 convertase

Factor I Alternative

and classical

Soluble Regulator • Cleaves C3b to iC3b (inactive form) in
the presence of cofactors: factor H, C4-binding
protein, MCP, complement receptor 1 or
von Willebrand factor

MCP (CD46) Alternative Membrane

bound

Regulator • Cofactor for factor I-mediated C3b cleavage

Thrombomodulin All Membrane

bound

Regulator • Enhanced factor I-mediated C3b cleavage with
cofactor factor H

• Generates TAFI, which inactivates C3a and C5a

Clusterin Terminal Soluble Regulator • Inhibits MAC formation

C3 Alternative

and classical

Soluble Factor • C3 cleavage to C3a and C3b has anaphylactic,
chemotactic and antimicrobial properties

• C3b forms the C3 convertase with factor
B and further binds to form the C5 convertase

• C3b and its inactive form, iC3b, are opsonins

Factor B Alternative Soluble Factor • Binds to C3 and is cleaved by factor D to
form the C3 convertase C3bBb

MCP, membrane cofactor protein; TAFI, thrombin-activatable fibrinolysis inhibitor; MAC, membrane attack complex.
Modified with permission from [253].
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activate disease activity. Patients may, however,
have ongoing complement activation in the vascu-
lature even in the absence of renal tissue [27].

Streptococcus pneumoniae-associated HUS

Streptococcus pneumoniae-associated HUS is a
rare form of HUS occurring in both children and
adults during invasive neuraminidase-producing
pneumococcal infection. Neuraminidase activity
cleaves N-acetyl neuraminic acid (sialic acid) on
red blood cells, endothelial cells, renal epithelial
cells and platelets and thus exposes the Thomsen–
Friedenreich antigen (T antigen, Galb1-3GalNAc)
[30, 190]. Exposure of the T antigen is used to
diagnose this condition with a lectin assay [191]. It
has been assumed that neuraminidase activity
may precipitate HUS. This assumption is strength-
ened by the fact that influenza A infection may also
precipitate HUS [192], and these influenza strains
also produce neuraminidase. However, the evi-
dence is circumstantial and no specific pneumo-
coccal strain or neuraminidase profile has been
associated with HUS [193].

Interestingly, factor H binds to sialic acid on host
cells. Thus, cleavage of sialic acid by neu-
raminidase may reduce the capacity of factor H to
protect host cells from complement deposition.
Factor H also conferred resistance to invasive
pneumococcal infection [194] but did not attenuate
vascular leakage in a mouse model of pneumococ-
cal sepsis [195]. Complement is activated during
S. pneumoniae-associated HUS, and some patients
may also have complement mutations [196]. In this
form of HUS, the haemolysis is direct antiglobulin
test (DAT) positive, whereas all other forms of HUS
are DAT negative.

DGKE-associated HUS

DGKE-HUS is associated with homozygous or
compound heterozygous mutations in the DGKE
gene [32]. The mechanism by which these muta-
tions lead to thrombotic microangiopathy is, as yet,
unclear but DGKE, demonstrated in endothelium,
platelets and podocytes, inactivates diacylglycerol
signalling, thus preventing thrombosis. Mutated
loss-of-function variants can thus promote throm-
bosis [32]. This form of HUS is usually not asso-
ciated with complement activation; however,
certain patients exhibit complement consumption
as well as complement mutations [197, 198], which
may predispose to disease.

Differential diagnosis

The clinical and pathological features of throm-
botic microangiopathy overlap between HUS and
thrombotic thrombocytopenic purpura (TTP) as
well as DIC. TTP is characterized by haemolytic
anaemia, thrombocytopenia, variable renal and
neurological manifestations and fever and is asso-
ciated with deficient or dysfunctional ADAMTS13
(a disintegrin and metalloproteinase with a throm-
bospondin type 1 motif 13), the von Willebrand
factor-cleaving protease. TTP is either congenital or
acquired, due to mutations in ADAMTS13 or
autoantibodies, respectively [199]. Episodes of
TTP can be precipitated by pregnancy or infections,
as in aHUS, and as these may be gastrointestinal
infections, differentiation from EHEC-HUS may be
difficult to assess initially. Most TTP patients
exhibit neurological symptoms.

DIC is usually associated with septicaemia and
may be difficult to differentiate from S. pneumo-
niae-associated HUS. The major difference is the
consumption of coagulation factors in DIC, which
is not a feature of HUS.

Evans syndrome is a rare autoimmune disease
manifesting as recurrent episodes of thrombocy-
topenia and DAT-positive haemolytic anaemia
[200]. The condition does not affect the kidneys.

Paroxysmal nocturnal haemoglobinuria (PNH) is
rare disease characterized by haemolytic anaemia,
thrombosis, renal manifestations or renal failure
due to mutations in the phosphatidylinositol gly-
can class A (PIG-A) gene, which leads to deficiency
of glycosylphosphatidylinositol (GPI)-linked pro-
teins. Certain GPI-linked proteins, such as CD55
and CD59, are associated with complement regu-
lation [201]. Thus, patients exhibit complement
activation and present a clinical phenotype similar
to aHUS.

Clinical investigation of the patient with HUS

Once a diagnosis of HUS has been made, and
other diagnoses have been excluded, a clinical
and laboratory investigation should be carried out
in order to determine the underlying cause of
HUS. Disease manifestations may overlap; for
example, cases of aHUS may be preceded by
gastroenteritis, and thus resemble EHEC-asso-
ciated HUS. For this reason, comprehensive
investigation of the patient with HUS should
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address the main causes of disease, as shown in
Table 1. Table 4 presents laboratory assays rec-
ommended for this investigation. Patients should
be assessed based on the presumptive diagnosis,
and thus, if a diagnosis of EHEC-associated HUS
is assumed, based, for example, on a prodrome of
bloody diarrhoea and temporal relationship to an
ongoing epidemic, then a comprehensive comple-
ment analysis is not required. If, however, the
diagnosis is unclear, complete testing may be
necessary.

Treatment

The treatment of the various subtypes of HUS is
supportive but also directed towards the specific
cause of disease. Supportive care includes renal
replacement therapy (preferably peritoneal dialy-
sis, or continuous haemodialysis in the unstable
patient), adequate hydration and nutrition, cor-
rection of electrolyte disturbances and acidosis,
and control of hypertension and seizures [202].
Fluid replacement should consist of insensible
losses and urine output in order to avoid excess
hydration in the patient with renal failure. Blood
transfusions are usually not recommended unless
haemoglobin levels drop. In children, haemoglobin
levels below 60 g/L may necessitate transfusion,
but in adults comorbidities may influence the level
at which a blood transfusion should be given.
Platelet transfusions should be avoided unless the
patient has a platelet count below 10 9 109/L and
is at risk due to active bleeding or requires
surgery.

Management of EHEC-associated HUS

Volume expansion using isotonic fluids was shown
to have a nephroprotective effect when given before
the onset of HUS [203, 204] and may be adminis-
tered cautiously even after the development of HUS
[205] to reduce the prerenal component of acute
kidney injury due to fluid loss during the gastroin-
testinal phase of EHEC infection. Thus, fluid
administration reduces the risk of developing
HUS and the need for dialysis during established
HUS. Antibiotics should be avoided during the pre-
HUS phase [13, 206] presumably due to their effect
on bacteriophage lysogenesis and toxin release,
thus increasing the risk of developing HUS. One
study indicated, however, that fosfomycin may
prevent the development of HUS [207]. Once HUS
has developed, there is no evidence that antibiotic
treatment is harmful; on the contrary, data from

the large German outbreak in 2011 indicated that
antibiotic treatment was associated with fewer
seizures, less abdominal surgery and faster erad-
ication of the bacterial strain from the gut [12,
208]. These observations may, however, be specific
for the outbreak strain and require confirmation in
other cases.

Plasma infusions or exchange have been given
during EHEC-associated HUS. There is to date
little evidence for its efficacy although data differ
between paediatric and adult HUS cases. Children
do not seem to benefit from plasma therapy [209,
210] whilst uncontrolled case studies reported
some benefit in adults [211–213]. These results
could not be confirmed during the large outbreak
in Germany in 2011 in which many adults were
treated with plasma exchange [12, 202, 214].
Moreover, as Shiga toxin does not circulate in free
form, it is unclear how plasma exchange could
affect the course of disease other than by the
removal of toxic microvesicles as well as prothrom-
botic and proinflammatory factors and replenish-
ment of coagulation and complement factors.
However, by the time the patient has presented
with HUS, the toxic damage to target organs has
already occurred and plasma exchange may there-
fore not be beneficial.

As complement activation via the alternative
pathway may occur during EHEC-associated
HUS and contribute to renal damage, comple-
ment inhibition was attempted using eculizumab,
a monoclonal anti-C5 antibody. An initial report
in three children with neurological complications
was encouraging [215], but a clear beneficial
effect could not be demonstrated during the large
German outbreak of E. coli O104:H4 in children
[209] or adults [12, 214]. Complement-induced
cellular injury may, however, contribute to the
renal and neurological manifestations during
HUS, and there is a possibility that a selection
bias may have affected the results of these
reports, that is that patients more severely
affected by HUS were selected for treatment and
that patients may have exhibited a worse out-
come without treatment. This possibility was
controlled for, albeit retrospectively, in one study
[12] which still showed that eculizumab treat-
ment did not affect the course of disease. More-
over, patients treated with eculizumab were
simultaneously treated with antibiotics, and, as
antibiotic treatment alone seemed to have a
beneficial effect in patients with HUS during the
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E. coli O104:H4 outbreak [12], this combined
therapy may confound the clinical findings.
Therefore, randomized clinical trials are required
to determine whether patients with severe EHEC-
associated HUS benefit from complement block-
ade. In a mouse model of EHEC infection, an
anti-C5 antibody prevented renal injury when
given early on after infection but not when given
6 days after inoculation [139], suggesting that
complement blockade is not effective when given
late in the course of murine EHEC infection.

Novel therapies are being tested for EHEC-asso-
ciated HUS. These include antibodies to Shiga
toxin, Gb3 analogues, vaccines and manganese
(reviewed in ref. [202]) to neutralize the toxin in the
circulation, prevent its binding to its receptor or
block its intracellular toxicity. Furthermore,
recombinant thrombomodulin may reduce
endothelial damage and was shown to be protective
in mice [216]. These treatments are not yet com-
mercially available.

In most cases, EHEC-associated HUS does not
recur after the acute phase of disease. If it does,
or if a family member develops HUS at a
separate time-point, a diagnosis of aHUS should
be considered [217]. Renal transplantation may
be necessary for the EHEC-associated HUS
patient who does not regain renal function after
the acute phase of disease. If there is doubt
regarding the initial diagnosis of EHEC-asso-
ciated HUS, a diagnosis of aHUS should be ruled
out (Table 4) particularly in the patient requiring
a transplant.

Treatment of aHUS

Patients may require dialysis and intensive care
during the acute phase of aHUS. As the disease is
often associated with complement activation,
plasma therapy was considered the primary treat-
ment for many years [218, 219]. Plasma infusion or
exchange would theoretically replenish and
exchange mutated complement factors, if soluble
(Table 3), and remove anti-factor H antibodies.
Because large quantities of plasma were required,
plasma exchange was the preferred modality to
prevent colloid overload in the patient with
decreased renal function.

Plasma exchange combined with immunosuppres-
sive therapy (prednisolone, cyclophosphamide
pulses or rituximab) during the acute phase,

followed by maintenance therapy (prednisolone
with either mycophenolate mofetil or azathioprine)
appears to be suitable treatment for most patients
with anti-factor H antibodies [172, 220]. Patients
are monitored by measurement of their antibody
levels, and levels >1300 AU/mL have been associ-
ated with the risk of relapse [221].

In most other patients with aHUS, that is those
who do not have circulating anti-factor H antibod-
ies, the use of plasma to treat or prevent aHUS
episodes has not been as successful [222]. Plasma
could induce remission in patients who neverthe-
less progressed to develop renal failure over time
[55, 57, 179]. The same was true for patients with
aHUS who had undergone renal transplantation;
pre-emptive plasma therapy could not prevent
renal deterioration in many cases [27, 57]. Patients
with isolated MCP mutations do not generally
respond to plasma treatment, as MCP is a mem-
brane-bound protein.

Eculizumab, an orphan drug approved for the
treatment of aHUS, has proved to be a most
efficient therapy for these patients, blocking C5
and thus the formation of the terminal comple-
ment cascade. Its efficacy has been demonstrated
in multiple case reports as well as in controlled
studies with 26 weeks of observation in adults
[223, 224] and children [225]. Treatment pre-
vented haematological recurrences and renal fail-
ure. In patients with decreased renal function,
improvement was noted during treatment. Fur-
thermore, eculizumab could prevent aHUS
relapses after transplantation [226]. Current con-
sensus recommends the initiation of treatment as
soon as possible, before thorough complement
genetic investigation is completed. Delay in the
initiation of treatment may confer a worse prog-
nosis [57]. Treatment is associated with an
increased risk of infection with encapsulated
bacteria, primarily meningococci [223]. Patients
should therefore be vaccinated against meningo-
coccal infection at least 2 weeks before commenc-
ing treatment. Vaccination against other
encapsulated strains (Hemophilus influenzae and
S. pneumoniae) is also recommended. If treatment
is given during an acute episode, patients are
treated prophylactically with antibiotics to pre-
vent meningococcal infection until vaccination is
given.

Treatment efficacy should be monitored by haema-
tological and biochemical markers of disease
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activity (Table 2), levels of complement activation
(CH50 or complement activity kits [227]) and
complement deposition on cells [166].

Discontinuation of eculizumab treatment may be
associated with an increased risk of aHUS recur-
rence [57]. The same may be true for increasing
treatment intervals. However, individual dosage
regimens can be achieved with appropriate moni-
toring of complement activity [227].

Management of S. pneumoniae-associated HUS

The primary aim of treatment of patients with
S. pneumoniae-associated HUS is eradication of
the bacterial strain with antibiotics. Recommenda-
tions to avoid the use of plasma or unwashed red
blood cells are based on the finding that these
products may contain agglutinins against the T
antigen and thus worsen the disease [31]. However,
anecdotal evidence suggests that some patients
respond favourably to plasma therapy [228].

Management of DGKE-associated HUS

This form of HUS usually does not respond to
plasma therapy [32]. However, some cases exhibit-
ing low C3 levels have been found to respond to
intensive plasma therapy [197]. Furthermore,
DGKE-associated HUS does not respond to eculizu-
mab and does not recur after transplantation [32].

Treatment of HUS associated with cobalamin dysfunction

Patients with cobalamin C disorders resulting in
HUS should receive treatment for the underlying
disorder with hydroxocobalamin, betaine and foli-
nic acid [229] although in some cases plasma
exchange may also be beneficial.

Prognosis

Most patients with EHEC-associated HUS make a
full recovery. The presence of neurological symp-
toms may be an ominous sign associated with
worse outcome. Likewise, high neutrophil counts
[22, 23], low platelet counts and long duration of
anuria have been associated with a worse progno-
sis [22, 24]. In aHUS, prognosis and response to
treatment are largely dependent on the presence of
a specific mutation [57] or autoantibodies. Since
the advent of eculizumab therapy, the prognosis of
these patients has improved immensely and the
risk of recurrence has decreased, both in patients

with native kidneys and in those with a renal graft.
However, eculizumab treatment is very expensive
and certain national healthcare systems have
therefore not recommended reimbursement,
thereby restricting its use.

Summary

Haemolytic uraemic syndrome is associated with
severe endothelial damage and platelet activation,
caused by a wide spectrum of toxic and/or
immunological reactions, all leading to similar
disease manifestations and histopathological
lesions. The varying aetiologies require extensive
investigation, as the success of a treatment strategy
is largely dependent on obtaining a correct diagno-
sis and thereby choosing appropriate treatment.
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