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KEY POINTS

� Anemia of inflammation results from hepcidin-induced hypoferremia combined with
cytokine-mediated suppression of erythropoiesis and decreased lifespan of erythrocytes.

� Treatment of the cause of inflammation improves the anemia.

� Treatment with erythropoiesis-stimulating agents and/or intravenous iron is rarely
necessary.
CLINICAL PRESENTATION

� Mild to moderate anemia (hemoglobin rarely <8 g/dL)
� Occurring in a setting of infection, inflammatory disease, or malignancy
� Low serum iron
� Systemic iron stores not depleted
Definitions

Anemia of inflammation (AI, formerly also called anemia of chronic disease or anemia
of chronic disorders) is usually a mild to moderately severe anemia (hemoglobin rarely
lower than 8 g/dL) that develops in the setting of infection, inflammatory disease, or
malignancy.1 The defining biochemical features of AI include low serum iron despite
adequate systemic iron stores. The concentration of serum transferrin is also
decreased during chronic inflammation but this is a lagging indicator because of the
long half-life of transferrin (about 8 days) compared with iron (about 1.5 hours).2 The
erythrocytes are usually of normal size and have normal hemoglobin content but are
reduced in number (normocytic, normochromic anemia). In some cases, particularly
if the inflammatory disease is longstanding, the red cells are mildly decreased in
size and hemoglobin content.
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Related Conditions

Anemia of critical illness presents with a similar pattern of findings but develops within
days in patients who are hospitalized in intensive care units with infections, sepsis, or
other inflammatory conditions.3 Anemia of critical illness may be exacerbated by
frequent diagnostic phlebotomies or increased gastrointestinal blood loss as is com-
mon in such settings. Anemia of aging4 is a chronic anemia similar to AI but often
occurring in the elderly without a specific diagnosis of a predisposing underlying dis-
ease. The prevalence of this anemia increases with age, and detailed studies often
detect evidence of inflammation, including increased serum C-reactive protein or
other biomarkers of inflammation. Anemia of chronic kidney disease is commonly
attributed to erythropoietin deficiency but accumulating evidence favors a more com-
plex pathogenesis with a large component of AI whose exacerbations may be mani-
fested as “erythropoietin resistance”.5

Diagnosis

The traditional gold standard for the diagnosis of AI was anemia with hypoferremia or
with low transferrin saturation, despite the presence of Prussian blue stainable iron in
bone marrow macrophages. The main confounding diagnostic entity that also pre-
sents with anemia and hypoferremia is iron deficiency anemia where there is no stain-
able iron in the marrow macrophages. This gold standard has been challenged not
only because of the invasive nature of the marrow sampling procedure but also
because of findings that bone marrow iron readings are qualitative and not always
consistent between evaluators and in multiple specimens6,7 and that iron therapy
may cause marrow iron deposition in a poorly bioavailable form, which cannot be
used by iron-deficient patients.8 The marrow iron stain has largely been replaced by
serum ferritin determinations. Low serum ferritin (less than 15 ng/mL for general pop-
ulation, with some laboratories using age and gender-specific norms) is highly specific
for iron deficiency9 (genetic deficiency of L-ferritin is an extremely rare exception10)
and effectively rules out AI. AI is diagnosed when anemia and hypoferremia are
accompanied by serum ferritin that is not low. Serum ferritin is increased by inflamma-
tion, in part reflecting direct inflammatory regulation of ferroportin synthesis11,12 and in
part because serum ferritin originates in macrophages where its synthesis is
increased by iron sequestration13 that takes place during inflammation. Iron defi-
ciency is presumed to coexist with AI when ferritin is insufficiently elevated for the in-
tensity of inflammation. Serum ferritin is also increased by tissue injury, especially to
the liver.

Diagnostic Challenges

The determination of what constitutes “inappropriately low” ferritin may be difficult in
practice because even patients with very high serum ferritin levels may respond to
intravenous iron therapy by increasing hemoglobin.14 In principle, the limitations of
serum ferritin could be circumvented by assaying additional markers of iron deficiency
less affected by inflammation, most prominently soluble transferrin receptor.15–17

However, the relevant assays have not been standardized, the added value of such
studies has not yet been convincingly demonstrated,18 and none have been widely
adopted. When the anemia is clinically significant and a component of iron deficiency
is suspected in a patient with AI, it may be reasonable to perform a therapeutic trial of
intravenous iron. Current intravenous iron preparations are quite safe, but the very rare
reactions to their administration and the possibility of exacerbating an existing or
occult infectious process should be included in the risk-benefit analysis.19
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Prevalence

Detailed statistics about the prevalence of AI are not available. It is estimated that the
aging of the population and the high prevalence of chronic infections and inflammatory
disorders worldwide combine to make AI the second most common cause of anemia
worldwide, after iron deficiency. The order may eventually reverse as iron deficiency
anemia is more effectively treated or prevented by dietary iron supplementation and
by public health measures that curb intestinal parasitic infections.

PATHOPHYSIOLOGY

� Mildly shortened erythrocyte survival (increased destruction)
� Hypoferremia, iron-restricted erythropoiesis from cytokine-stimulated hepcidin
increase

� Suppression of erythropoiesis by direct effects of cytokines on the marrow
� Variable effects of inflammation on erythropoietin production, renal excretion of
hepcidin

Overview of the Causative Factors

Despitemore than50yearsof investigation,ourunderstandingof thepathophysiologyof
AI is incomplete. Already the earliest studies of AI indicated that the disorder is a conse-
quence of amild decrease in erythrocyte survival combinedwith impaired production of
erythrocytes.1,20 The increaseddestructionof erythrocytes is predominantly attributable
to macrophage activation by inflammatory cytokines but other hemolytic mechanisms
may contribute in specific inflammatory diseases. The suppression of erythrocyte pro-
duction has 2major components, iron restriction and direct cytokine effects on erythro-
poietic progenitors. These effects combine to limit the erythropoietic response to
erythropoietin, which becomes insufficient to compensate for the increased destruction
of erythrocytes. In some situations, the production of erythropoietin may also be
decreased, perhaps due to cytokine effects on the renal cells that produce the hormone.
In severe inflammation, or when the primary pathology involves the kidneys, decreased
renal excretion of hepcidin contributes to hepcidin accumulation and iron restriction.21

The complex pathogenesis of AI is summarized in Fig. 1 and discussed further.

Erythrocyte Destruction

Experimentswith transfusederythrocytesshowedthat erythrocytes fromAIpatientsand
from normal controls survived longer in healthy recipients than in patients with AI.20 The
shortened survival of erythrocytes in AI has been attributed tomacrophage activation by
inflammatorycytokines that causes themacrophages to ingestanddestroyerythrocytes
prematurely. Anemia and excessive erythrophagocytosis are prominent features of
macrophage activation syndromes, especially those associated with systemic juvenile
rheumatoid arthritis.22 Here, treatment targeting interleukin 1 (IL-1) or IL-6 is proving
effective, suggesting an important (although possibly indirect) role of these cytokines
in the pathogenesis of excessive erythrophagocytosis. In mousemodels, multiple cyto-
kines, including interferon-g and IL-4, have been implicated in activating macrophages
for erythrophagocytosis.23,24 With the exception of fulminant hemophagocytic states,
which are fortunately rare, erythrophagocytosis in AI is only mildly increased and could
be readily compensated if the production of erythrocytes was not also impaired.1,20

Hypoferremia

A recent review of mechanisms governing iron homeostasis is provided elsewhere.25

Briefly, plasma iron concentrations are under homeostatic control of the hepatic iron



Fig. 1. The pathogenesis of AI is mediated by inflammatory cytokines and hepcidin, acting
together to suppress erythropoiesis and shorten erythrocyte survival in blood. The effects of
cytokines are denoted in light green, hepcidin effects in orange, and combined effects
in red.
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regulatory hormone hepcidin26 and are normally maintained in the 10 to 30 mM range.
Hepcidin acts by regulating the iron delivery to plasma frommacrophages that recycle
senescent erythrocytes, from duodenal enterocytes that absorb dietary iron, and from
hepatocytes involved in iron storage. The molecular target of hepcidin is the sole
known cellular iron exporter ferroportin,27 expressed on cell membranes in tissues
that deliver iron to plasma. The binding of hepcidin to ferroportin causes ferroportin
endocytosis and its subsequent proteolysis in lysosomes. The loss of ferroportin
from cell membranes causes a proportional reduction of iron export to plasma. The
production of hepcidin by hepatocytes is in turn regulated by plasma and hepatic
iron concentrations and inflammatory cytokines, chiefly IL-6.28,29 Inflammatory stimuli
administered to humans30 or experimental animals elicit a decrease in serum iron con-
centration within a few hours. The response depends on inflammation-induced in-
crease in plasma concentrations of hepcidin.31 Increased hepcidin degrades cellular
ferroportin and traps iron in macrophages, hepatocytes, and intestinal enterocytes
so that less iron is delivered to plasma transferrin. The plasma iron compartment is
then rapidly depleted of iron through continuing iron uptake by erythroid precursors.

Increased Hepcidin Causes an Iron-Restricted Anemia Even in the Absence of
Inflammation

An experiment of nature, the syndrome of iron-refractory iron deficiency anemia
(IRIDA),32 provides an important insight into the role of hepcidin in the regulation of
erythropoiesis and as a pathogenic component of AI. The otherwise healthy children
with IRIDA suffer from a severely microcytic, hypochromic anemia and hypoferremia
that respond poorly to treatment with oral iron and incompletely even to treatment
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with intravenous (IV) iron.33,34 Guided by a mouse model of this condition,35 the path-
ogenesis of IRIDA is now partially understood.36 Most of the patients with IRIDA have
homozygous or compound heterozygous mutations in the gene encoding the trans-
membrane serine protease TMPRSS6 (also called matriptase-2), leading to serum
hepcidin levels that are high or inappropriately elevated considering that the patients
are iron deficient. Hepcidin-mediated block in duodenal iron absorption is likely
responsible for the ineffectiveness of oral iron therapy, and hepcidin-induced retention
of iron in macrophages reduces the response to IV iron replacement therapy. Impor-
tantly, IRIDA patients continue to have microcytosis and hypochromia even after iron
therapy, indicating that hemoglobin synthesis is impaired more than the production of
erythrocytes. This is in contrast to AI, which is usually a normochromic normocytic
anemia, indicating that in AI the impairment of hemoglobin synthesis is roughly
balanced by decreased production of erythrocytes. Thus, direct suppression of eryth-
rocyte production by inflammatory cytokines in AI may “compensate” for the effect of
hypoferremia on hemoglobin synthesis, generating fewer erythrocytes but with normal
size and hemoglobin content.

Suppression of Erythropoiesis by Inflammation

Inflammatory cytokines, including tumor necrosis factor (TNF) a, IL-1, and interferon-g,
have been reported to suppress erythropoiesis in vitro37–41 as well as in mouse
models.24,42 Detailed understanding of the mechanisms involved has been hindered
by the complexity of cytokine effects and the ability of each cytokine to regulate the
production of many other cytokines.41 Nevertheless, several new and promising con-
cepts about the effects of cytokines on erythropoiesis have recently emerged. Libregts
and colleagues24 developed a mouse model where overproduction of interferon-g
leads to the development of a mild-to-moderate normocytic, normochromic anemia.
The model manifests a 50% decrease in erythrocyte survival attributable to inter-
feron-g–mediated activation of macrophages in the splenic red pulp. The model
also shows suppression of erythrocyte production affecting the erythroblast stages
and the earliest erythroid-committed precursor burst-forming unit–erythrocyte but
not proerythroblasts and colony-forming unit–erythrocyte (CFU-E). Importantly,
myeloid CFU-granulocyte/macrophage colonies were increased. Microarray analysis
of erythroblasts indicated that interferon-g promotes the transcription of PU.1 and
its target genes in an interferon regulatory factor 1–dependent manner but does not
affect GATA-1 or its targets. PU.1 and GATA-1 antagonize each other’s activity, so
the increase in PU.1 would be expected to promote myelopoiesis at the expense of
erythropoiesis. During infections with viruses or intracellular pathogens known to
induce interferon-g, this mechanism may assure sufficient production of monocytes
andmacrophages, at the expense of temporary impairment of erythropoiesis. Whether
other inflammatory cytokines use a similar or different mechanism remains to be
determined.

Hepcidin-induced Hypoferremia and Interferon-g Synergize to Suppress
Erythropoiesis

Richardson and colleagues43 examined how inflammatory cytokines and hypoferre-
mia interact to affect erythropoiesis during AI. Using in vitro culture of human
CD341 primary progenitors, they documented that hypoferremia (transferrin satura-
tion �15%) potentiates the suppressive effects of TNF-a and interferon-g on erythro-
poiesis. Surprisingly, erythropoietic suppression could be reversed by the addition of
the Krebs cycle intermediate isocitrate, a product of the enzyme aconitase, which also
functions as a cellular iron sensor. Isocitrate injections also reversed AI in a rat model
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of autoimmune arthritis induced by injection of streptococcal peptidoglycan-
polysaccharide. The authors present evidence that hypoferremia activates PU.1 via
a protein kinase C pathway, synergizing with the effect of interferon-g. Isocitrate,
acting on aconitase, reverses the effect of hypoferremia on PU.1 and relieves the sup-
pression of erythropoiesis. It remains to be seen if these effects are important in other
animal models and in human subjects.

Animal Models of AI Show Partial Dependence on Hepcidin

A new mouse model of AI was generated by a single intraperitoneal injection of heat-
killed Brucella abortus.44 Like human AI, this model showed multifactorial pathogen-
esis including iron restriction from increased hepcidin, transient suppression of
erythropoiesis, and shortened erythrocyte lifespan. Mice developed severe anemia
with mild microcytosis and mild hypochromia, a hemoglobin nadir at 14 days and par-
tial recovery by 28 days.45,46 After an early increase in inflammatory markers and hep-
cidin, the mice manifested hypoferremia despite iron accumulation in the liver.
Erythropoiesis was suppressed between days 1 and 7, and erythrocyte destruction
was increased as evidenced by shortened red blood cell lifespan and rare schisto-
cytes on blood smears. Erythropoietic recovery began after 14 days but was iron-
restricted, as documented by increased erythrocyte zinc protoporphyrin. In mice
with ablated hepcidin-1 gene, anemia was milder, not iron-restricted, and with faster
recovery, supporting the role of hepcidin in the development of AI.
In the same mouse model of AI, the therapeutic administration of antihepcidin

monoclonal antibodies decreased the severity of anemia.44,47 Moreover, resistance
to exogenous erythropoietin doses observed in this model was relieved by coadmin-
istration of the antibodies with erythropoietin. In the rat model of autoimmune arthritis
induced by injection of streptococcal peptidoglycan-polysaccharide, suppressing
hepcidin production by administration of the dorsomorphin derivative LDN-193189
or soluble hemojuvelin-Fc fusion protein, 2 agents that interfere with bone morphoge-
netic protein receptor signaling, also ameliorated anemia.48

TREATMENT OF AI

� Treat the underlying disease
� Treat anemia specifically only if severe or limits activities of daily living
� Erythrocyte transfusion for acute symptoms
� Erythropoiesis-stimulating agents (ESAs) with or without IV iron (off-label
treatment)

� Experimental therapies under development include new ESAs, anticytokine
drugs, and agents targeting the hepcidin-ferroportin pathway

Current Therapy

AI is a secondary manifestation of inflammatory disorders, and treating the underlying
disease will correct the anemia. Such treatment is not always possible. Direct treat-
ment of anemia should be considered only if it is impairing the patient’s performance,
quality of life, or recovery from underlying illness. Inflammatory diseases sufficiently se-
vere to cause AI may also cause fatigue or malaise through cytokine-dependent mech-
anisms, so these symptoms need not be caused by anemia. Potential therapies for AI
include erythrocyte transfusions usually reserved for severe and acutely symptomatic
anemia, and ESAs (erythropoietin and its derivatives, mimics or inducers, as they
become available) with or without intravenous iron supplementation. AI is not a specif-
ically approved indication for the use of ESAs but should be considered as an



Table 1
Experimental therapeutics for the treatment of AI (not including ESAs)

Agent or Activity Target Chemistry Development Status Key Published Results

Tocilizumab IL-6 receptor Humanized monoclonal
antibody

Approved to treat rheumatoid
arthritis and juvenile rheumatoid
arthritis (Genentech, Roche,
Chugai)

Tocilizumab rapidly reduced hepcidin
levels and improved anemia in patients
with Castleman syndrome55 or
rheumatoid arthritis56,57

Siltuximab IL-6 Chimeric mouse-human
monoclonal antibody

Submitted for FDA approval for
multifocal Castleman disease
(Janssen)

Siltuximab lowered hepcidin and
improved anemia in patients with renal
cell carcinoma58

Hepcidin binders Hepcidin peptide Monoclonal antibody Preclinical to phase 1 (Lilly)
Anticalins Preclinical (Pieris) PRS-080 increased serum iron in

monkeys59

Spiegelmers Phase 2a (Noxxon) NOX-H94 alleviated IL-6–induced anemia
in a primate model60

Inhibitors of
hepcidin
production

Inhibit signaling by bone
morphogenetic protein
receptor type I

The kinase site of bone
morphogenetic
receptor I

Preclinical LDN-193189 improved anemia in the
mouse model of turpentine-induced
AI61

Neutralize bone
morphogenetic proteins

Soluble hemojuvelin-Fc
fusion protein

Phase 2aa (FerruMax) Hemojuvelin-Fc fusion protein alleviated
anemia in a rat model of arthritis48

elicited by Group A streptococcal
peptidoglycan-polysaccharide

Heparin derivatives Preclinical Heparin reduced hepcidin expression62 in
mice and serum hepcidin
concentrations in patients62

Inactivate hepcidin mRNA Antisense
oligonucleotides (ASO)

Preclinical (Xenon/ISIS) Antimouse hepcidin ASO improved
anemia in a turpentine model of AI in
mice63

Inactivate transferrin
receptor 2 mRNA

siRNA oligonucleotides Preclinical (Alnylam) Anti-TfR2 siRNA alleviated AI in rodent
models64

Ferroportin
blockers

Hepcidin binding site
on ferroportin

Monoclonal antibody Phase 1a (Lilly)

Abbreviations: FDA, Food and Drug Administration; mRNA, messenger RNA; siRNA, small interfering RNA.
a Clinicaltrials.gov.
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alternative to chronic erythrocyte transfusion. The use of ESAs in AI is based on a small
number of anecdotal reports49–53 that reported improvement of anemia, and similar-
ities between AI and anemia of chronic kidney disease (CKD), the main indication for
ESAs. In CKD, IV iron supplementation potentiates the effect of erythropoietin and
its derivatives,54 and it has been reported that IV iron may have a similar activity in AI.53

Experimental Therapy

Experimental treatments of AI target cytokines or the hepcidin-ferroportin axis and its
various regulators (Table 1). Most of these agents have proved effective in animal
models and several are undergoing human trials. Anti-IL-6 agents and other anticyto-
kine drugs that indirectly lower IL-6 levels are already approved for the treatment of
severe inflammatory diseases. Some of these agents may prove to be very effective
for the treatment of AI in other settings, reflecting the important role of IL-6 in its path-
ogenesis. Because AI affects symptoms and quality of life but has not been demon-
strated to affect survival from the underlying disease, drugs specifically targeted for
AI must not only demonstrate efficacy but also be well-tolerated and free of serious
side effects.
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