Convalescent plasma in Covid-19: Possible mechanisms of action

Manuel Rojas, Yhojan Rodriguez, Diana M. Monsalve, Yeny Acosta-Ampudia, Bernardo Camacho, Juan Esteban Gallo, Adriana Rojas-Villarraga, Carolina Ramírez-Santana, Juan C. Díaz-Coronado, Rubén Manrique, Ruben D. Mantilla, Yehuda Shoenfeld, Juan-Manuel Anaya

PII: S1568-9972(20)30116-6
DOI: https://doi.org/10.1016/j.autrev.2020.102554
Reference: AUTREV 102554
To appear in: Autoimmunity Reviews

Received date: 11 April 2020
Accepted date: 12 April 2020

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier.
Convalescent Plasma in Covid-19: Possible Mechanisms of Action

Manuel Rojas¹, Yhojan Rodríguez¹,², Diana M. Monsalve¹, Yeny Acosta-Ampudia¹, Bernardo Camacho³, Juan Esteban Gallo⁴, Adriana Rojas-Villarraga⁵, Carolina Ramírez-Santana¹, Juan C. Díaz-Coronado⁶, Rubén Manrique⁷, Ruben D. Mantilla¹,², Yehuda Shoenfeld⁸, Juan-Manuel Anaya¹,²

¹ Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia.
² Clínica del Occidente, Bogota, Colombia.
³ Instituto Distrital de Ciencia Biotecnología e Investigación en Salud, IDCBIS, Bogota, Colombia.
⁴ GenomaCES, Universidad CES, Medellín, Colombia.
⁵ Fundación Universitaria de Ciencias de la Salud (FUCS), Bogota, Colombia.
⁶ Internal Medicine Department, Universidad CES, Medellín, Colombia.
⁷ Epidemiology and Biostatistics Research Group, Universidad CES, Medellín, Colombia.
⁸ Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, affiliated to Tel-Aviv University, Israel; Laboratory of the Mosaics of Autoimmunity, Saint Petersburg State University, Saint-Petersburg, Russian Federation.

*Corresponding author:
Juan Manuel Anaya, MD, PhD.
Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario,
Carrera 26-63-B-51, 110010 Bogota, Colombia.
E-mail address: juan.anaya@urosario.edu.co

Key Words

Coronavirus, COVID-19, SARS-Cov-2, convalescent plasma, cytokines, intravenous immunoglobulins, neutralizing antibodies, ACE-2 receptor.
Highlights

- Coronavirus disease 19 (COVID-19) is an emerging viral threat with major repercussions for public health.
- There is no specific treatment for COVID-19.
- Convalescent plasma (CP) emerges as the first option of management for hospitalized patients with COVID-19.
- Transference of neutralizing antibodies helps to control COVID-19 infection and modulates inflammatory response.
- Other plasma components may enhance the antiviral and anti-inflammatory properties of CP.
Abbreviations

ADE: Antibody-dependent enhancement.

BAFF: B cell–activating factor.

BCR: B-cell receptor.

CP: Convalescent plasma.

DCs: Dendritic cells.

HIV: Human immunodeficiency virus.

ICU: Intensive care unit.

IgG: Immunoglobulin G.

IgM: Immunoglobulin M.

IVIg: Intravenous immunoglobulin.

MERS: Middle East respiratory syndrome.

MERS-CoV: MERS coronavirus.

NAbs: Neutralizing antibodies.

NAT: Nucleic acid test.

S1-RBD: Spike1-receptor binding protein

SARS: Severe acute respiratory syndrome coronavirus.

SARS-CoV: SARS coronavirus.
Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible of the coronavirus disease 2019 (COVID-19) pandemic. Therapeutic options including antimalarials, antivirals, antibiotics and vaccines are under study. Meanwhile the current pandemic has called attention over old therapeutic tools to treat infectious diseases. Convalescent plasma (CP) constitutes the first option in the current situation, since it has been successfully used in other coronaviruses outbreaks. Herein, we discuss the possible mechanisms of action of CP and their repercussion in COVID-19 pathogenesis, including direct neutralization of the virus, control of an overactive immune system (i.e., cytokine storm, Th1/Th17 ratio, complement activation) and immunomodulation of a hypercoagulable state. All these benefits of PC are expected to be better achieved if used in non-critically hospitalized patients, in the hope of reducing morbidity and mortality.
1. Introduction

Viruses of the *Coronaviridae* have a positive-sense, single strand, RNA structure with 26 to 32 kilobases length [1]. Coronaviruses have been recognized in numerous avian hosts and in several mammals, such bats, camels, mice, cats, dogs and more recently in scaly anteaters [2–4]. Most of Coronavirus are pathogenic to humans but they produce mild symptoms or asymptomatic infections. However, in the last two decades two lethal viruses have emerged within this family: the severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) [5], and the Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) [6]. These are characterized by severe fever (85%), non-productive cough (69%), myalgia (49%) and dyspnea (42%), with a high frequency of admission to intensive care unit (ICU) [5,7].

In December 2019, a new member of the Coronaviridae family associated with severe pneumonia was detected in Wuhan, China [8]. Patients showed similar clinical findings to SARS-CoV and MERS-CoV given by high fever, dyspnea, and chest radiographs revealing invasive multilobed lesions [9,10]. The virus was initially termed as 2019 novel coronavirus (2019-nCoV) [8], and it is currently known as SARS-CoV-2 producing the coronavirus disease 2019 (COVID-19). The origin of the virus is unknown, however, a recent study showed that the virus shares 88% identity with bat-derived SARS-like coronaviruses named bat-SL-CoVZC45 and bat-SL-CoVZXC21, suggesting that bats are the most likely reservoir [4]. Interestingly, phylogenetic analysis revealed that SARS-CoV and MERS-CoV were close to COVID-19 in about 79% and 50%, respectively. Recently, it has been discussed that the similar sequence of the virus with human proteins could be deleterious and associated
with autoimmune phenomena [11,12]. Although the current situation argues for prompt vaccination strategies, it has been suggested that it would be safer to test cross-reactivity of different viral antigens with those in humans to reduce the probability of autoimmune reactions (i.e., molecular mimicry), especially in individuals with genetic background for autoimmunity [11,13].

Currently, treatment of disease is challenging and the lack of clinical evidence with antiviral agents is the rule. Therapeutic schemes with Lopinavir/Ritonavir failed to prove reduction in overall mortality [14]. A recent randomized controlled trial with Hydroxychloroquine, showed reduction in body temperature and cough remission in the intervention group compared with controls [15]. However, the small sample size and the short period of follow up, preclude conclusions about its efficacy. Other study suggested that Azithromycin plus Hydroxychloroquine may reduce viral load, nonetheless, the clinical response associated with this approach was not evaluated and remains to be defined [16]. This combination was recently associated to worse outcomes when Hydroxychloroquine was administrated at high doses (QTc elongation and higher rates of lethality) [17]. Thus, there is not an effective nor safe medication for the management of COVID-19.

Given the lack of evidence for treatment of COVID-19 and vaccines, classical and historical interventions have remerged as options for the control of disease. That is the case of convalescent plasma (CP), a strategy of passive immunization that has been used in prevention and management of infectious diseases since early 20th century [18]. The CP is obtained using apheresis in survivors with prior infections caused by pathogens of interest in whom antibodies against the causal agent of disease are developed. The major target
is to neutralize the pathogen for its eradication [19]. Given its rapid obtaining, CP has been considered as an emergency intervention in several pandemics, including the Spanish flu, SARS-CoV, West Nile virus, and more recently, Ebola virus [20–24]. CP early administered after symptoms onset showed a reduction in mortality compared with placebo or no therapy in severe acute respiratory infections of viral etiology like influenza and SARS-CoV, however, a similar response in Ebola disease was not observed [20,25].

During apheresis, in addition to neutralizing antibodies (NAb\(^s\)), other proteins such as anti-inflammatory cytokines, clotting factors, natural antibodies, defensins, pentraxins and other undefined proteins are obtained from donors [26]. In this sense, transfusion of CP to infected patients may provide further benefits such as immunomodulation via amelioration of severe inflammatory response [27]. The latter is the case of COVID-19 in which an over-activation of the immune system may come with systemic hyper-inflammation or “cytokine storm” driven by IL-1\(\beta\), IL-2, IL-6, IL-17, IL-8, TNF and CCL2. This inflammatory reaction may perpetuate pulmonary damage entailing fibrosis and reduction of pulmonary capacity [28,29]. Herein, we propose the likely beneficial mechanisms of administering CP to patients with COVID-19 and provide a summary of evidence of this strategy in the current pandemic. At the time of writing this article there were 44 clinical trials registered at www.clinicaltrials.gov, including ours (NCT04332835, NCT04332380), in which the role of CP in COVID-19 will be evaluated.

2. Production and composition

2.1. Historical perspective
The principle of CP infusion was established in 1880 when it was shown that immunity against diphtheria relied on existing antibodies in blood from animals intentionally immunized with non-lethal doses of toxins, that could be transferred to animals suffering from active infections [30,31]. Then, it was recognized that immune plasma not only neutralizes the pathogen, but also provides passive immunomodulatory properties that allow the recipient to control the excessive inflammatory cascade induced by several infectious agents or sepsis [26,31]. In the early 1950s, purification and concentration of immunoglobulins from healthy donors or recovered patients, provided an option to treat serious infectious diseases as well as immune conditions including primary immunodeficiencies, allergies, and autoimmune diseases [30,32,33].

Several convalescent blood products such as intravenous immunoglobulins (IVIg) and polyclonal or monoclonal antibodies have been developed to treat infectious conditions [18]. However, in situations of emergency, they are difficult and expensive to produce, and may not yield an appropriate infectious control. Thus, the use of CP has been widely used in different outbreaks as the first therapeutic option given the lack of effective medications or vaccines and often as last chance or experimental treatment [26].

From the Spanish influenza to the current pandemic caused by COVID-19, it has been observed that the use of CP significantly reduces case fatality rates. That is the case of Influenza A (H1N1) pdm09, Spanish Influenza A (H1N1) and SARS-CoV infections in which the use of CP was associated to reduction in fatality rates, mortality (Table 1) [5,34–45], and mild adverse events (Table 2) [25,46–49]. Furthermore, the use of CP in other coronaviruses such as SARS-CoV, reduced days of hospital stay in critically ill patients [42,50]. In relation to
the use of mechanical ventilation, in Influenza A (H1N1) pdm09, and avian influenza A (H5N1), administration of CP reduced the duration of invasive ventilation [47,51]. In addition, it has been described that the use of CP in SARS-CoV and avian influenza A (H5N1) decreased the viral load in the respiratory tract [46,49]. Currently, CP used in patients with COVID-19 demonstrated to reduce viral load and improve clinical condition [38,39]. However, it is necessary to conduct randomize controlled trials to confirm the usefulness of this intervention, including hospitalized patients with mild symptoms and those in ICU.

The safety of the use of CP is another issue that has been historically relevant in epidemics. Currently, evidence exists of the safety of CP in situations of emergency (Table 2). In epidemics of influenza A (H1N1), SARS-CoV and MERS-CoV, studies did not find any adverse event associated to CP administration. In the case of Ebola, CP administration was associated with mild adverse reactions such as nausea, skin erythema, and fever [25]. In COVID-19, reports have shown that administration of CP is safe, and it was not associated with major adverse events. Thus, due to tolerability and potential efficacy CP is a good candidate to be evaluated as a therapeutic option to control the current pandemic.

2.2. Acquisition and plasma composition

The convalescent donors must undergo standard pre-donation assessment to ensure compliance with current regulations regarding plasma donation [52]. Currently, convalescent donors between 18 and 65 are considered as subjects
without infectious symptomatology and a negative test for COVID-19 after 14 days of recovery. These tests must be repeated 48 hours later and at the moment of donation [39,52]. Donors from endemic areas for tropical diseases (e.g., malaria) should be excluded. In addition to molecular tests, it is critical to recognize the emotional situation, to explore susceptibilities, and guarantee not exploitation of donors [53].

Apheresis is the recommended procedure to obtain plasma. This procedure is based on a continuous centrifugation of blood from donor to allow a selective collection plasma. The efficiency of this technique is around 400 mL to 800 mL from a single apheresis donation. This amount of plasma could be storage in units of 200 mL or 250 mL, and frozen within 24 hours of collection to be used in further transfusions [54].

As CP production requires high quality standards, it must be free of any infection, so tests for human immunodeficiency virus (HIV), hepatitis B, hepatitis C, syphilis, human T-cell lymphotropic virus 1 and 2, and Trypanosoma cruzi (if living in an endemic area) should be carried out [52,55]. In this sense, the nucleic acid test (NAT) for HIV and hepatitis viruses is mandatory to guarantee the safety of recipients [56]. Other protocols suggest the inactivation of pathogens with riboflavin or psoralen plus exposure to ultraviolet light to improve safety of CP [57].

There is not a standard transfusion dose of CP. In different studies for coronaviruses the administration of CP range between 200 mL to 500 mL in single or double scheme dosages (Table 1). Currently, the recommendation is to administrate 3 mL/kg per dose in two days [54]. This strategy facilitates the
distribution of plasma units (250 mL per unit) and provide a standard option of delivery in public health strategies.

Composition of CP is variable and include a wide variety of blood derive components. Plasma contains a mixture of inorganic salts, organic compounds, water, and more than 1000 proteins. In the latter we found albumin, immunoglobulins, complement, coagulation and antithrombotic factors among others [58] (Fig. 1A). Interestingly, it is supposed that plasma from healthy donors provides immunomodulatory effects via de infusion of anti-inflammatory cytokines, and antibodies that blockade complement, inflammatory cytokines and autoantibodies [27]. These factors may influence the immunomodulatory effect of CP in patients with COVID-19 (see below for details).

3. Antiviral mechanisms

NAbs are crucial in virus clearance and have been considered essential in protecting against viral diseases. Passive immunity driven by CP can provide these NAbs that restrain the infection. The efficacy of this therapy has been associated with the concentration of NAbs in plasma from recovered donors [25]. In SARS-CoV and MERS was discovered that NAbs bind to spike1-receptor binding protein (S1-RBD), S1-N-terminal domain and S2, thus inhibiting their entry, limiting viral amplification [59]. Moreover, other antibody-mediated pathways such as complement activation, antibody-dependent cellular cytotoxicity and/or phagocytosis may also promote the therapeutic effect of CP.

Tian et al. [60], showed through ELISA and BLI that one SARS-CoV-specific antibody, CR3022, bind with COVID-19 RBD and more importantly this antibody
did not show any competition with angiotensin converting enzyme-2 (ACE-2) for the binding to COVID-19 RBD. The RBD of COVID-19 varies broadly from the SARS-CoV at the C-terminus residues. Although this difference does not enable COVID-19 to bind ACE-2 receptor, does influence the cross-reactivity of NAbs [60].

A pseudotyped-lentiviral-vector-based neutralization assay to measure specific NAbs in plasma from recovered patients with SARS-CoV-2 showed variations in NAbs titers, approximately 30% of patients did not develop high NAbs titers after infection [61]. These variations are associated with age, lymphocyte count, and C reactive protein levels in blood, suggesting that other components from plasma contribute to the recovery of these patients.

In plasma, in addition to NAbs, there are other protective antibodies, including immunoglobulin G (IgG) and immunoglobulin M (IgM). Non-NAbs that bind to the virus, but do not affect its capacity to replicate, might contribute to prophylaxis and/or recovery improvement [54].

SARS-CoV-2 infection induces IgG antibodies production against N protein that can be detected at day 4 after the onset of disease and with seroconversion at day 14 [62]. In SARS infection 89% of the recovered patients, showed IgG-specific and NAbs 2 years post infection [63]. Moreover, the highest concentration of IgM was detected on the ninth day after the onset of disease and class switching to IgG occurred in the second week [64].

Shen et al. [38], showed that recovered donors from COVID-19 infection had SARS-CoV-2–specific antibody titers ranging between 1.800 and 16.200 and NAbs titers were between 80 and 480. The plasma obtained from the donors
and transfused in the recipients on the same day, lead to viral load decreased. After transfusion of CP, the titers of IgG and IgM in the recipients increased in a time-dependent manner. Moreover, presence of NAb in the recipients played a vital role in the restriction of viral infection. Another study evaluated the kinetics of SARS-CoV-2-specific NAb development during the course of the disease. The titers of NAb in patients infected with SARS-CoV-2 were low before day 10 post-disease onset and then increased, with a peak 10 to 15 days after disease onset, remaining stable thereafter in all patients [61].

4. Immunomodulation

4.1. F(ab')2 mechanisms

Historically, administration of IVlg has been one of the critical interventions in patients with autoimmune diseases as well as in autoinflammatory diseases, transplantation (i.e., chronic graft vs. host disease after marrow transplantation), primary and secondary immunodeficiency, hematologic malignancies among other conditions. Preparation of IVlg includes anti-idiotypic antibodies that blockade autoreactive recipient antibodies [36,65]. This reaction is critical to control autoantibodies in patients with autoimmune diseases. In this sense, a recent report in patients with COVID-19, showed that critically ill patients exhibited positivity for anti-cardiolipin IgA antibodies as well as for anti–β2-glycoprotein I IgA and IgG antibodies [66]. This evidence may suggest that CP-COVID-19 may neutralize this type of autoantibodies reducing the odds of suffering from thrombotic events (i.e., antiphospholipid syndrome-like disease), especially in critically ill patients. In the same line, a recent report of a patient
with Sjögren’s syndrome and COVID-19 successfully treated with CP may suggest that this strategy is safe and effective in autoimmune conditions [37].

In addition, some antibodies inhibit complement cascade (i.e., C3a and C5a), and limit the formation of immune complexes (Fig. 1C) [67,68]. Complement-deficient mice with induced SARS-CoV infection showed high viral titers, secretion of inflammatory cytokines and chemokines, and immune cell infiltration within the lung. These results suggest that complement activation largely contribute to systemic inflammation and migration of neutrophils to the lungs, perpetuating tissue damage [69]. Additional studies have shown that IgG transferred by plasma neutralize cytokines such as IL-1β and TNFα [70]. In this sense, passive immunity by infusion of CP-COVID-19 may limit the inflammatory cascade driven by pathogenic antibodies, as well as the cellular damage induced by the complement cascade activation in excessive inflammatory environments.

Antibody-dependent enhancement (ADE) is a mechanism in which the intensity of infection increases in the presence of preexisting poorly NAb’s, favoring the replication of virus into macrophages and other cells through interaction with Fc and/or complement receptors [71]. This phenomenon is used by feline coronaviruses, HIV and dengue viruses, use to take advantage of prior anti-viral humoral immune response to effectively infect host target cells [72,73]. In vitro assays with human promonocyte cell lines demonstrated that SARS-CoV ADE was primarily mediated by antibodies against spike proteins, significantly increasing the rate of apoptosis in these cells [73]. This is of major interest in regions in which coronaviruses are endemic. Vaccines development should consider this phenomenon in patients with COVID-19, and administration of CP-
COVID-19 in these areas should be conducted with caution since ADE may emerge as a harmful reaction in patients with active infection [74]. If one suspects of this phenomenon following CP-COVID-19 administration, clinicians must promptly notify the health authorities and evaluate the safety according to endemic coronaviruses in the region.

4.2. *Fc mechanisms*

FcRn is a critical regulator of IgG half-life. This receptor works by preventing degradation and clearance of IgG, by a pinocytotic mechanism that allow antibody circulation within the cell for its posterior excretion [65,75]. The FcRn inhibitor rozanolixizumab showed reduction of IgG concentrations in a phase 1 study [76], and it proved to be critical in IVlg catabolism in common variable immunodeficiency patients [77]. It has been demonstrated that saturation of this receptor by IVlg may account as the most likely mechanism to clear autoantibodies in autoimmune conditions by shortening their lifetime [78–80]. Whether antibodies play a critical role in COVID-19 pathogenesis stills remain to be elucidated, however, the saturation of FcRn may provide an additional immunomodulatory pathway in patients receiving CP.

Fcγ receptors are found in about all immune cells. These receptors are critical factors in modulating or inhibiting activity of immune cells, including lymphocytes [75]. Fcγ receptor activation by IgG induces the upregulation of FCγRIIB which has been associated with inhibitory effects. This was demonstrated in B cells, where the upregulation of FCγRIIB was associated with treatment efficacy for acute rejection after kidney transplantation [81], and was
a key determinant for IVIg response in patients with Kawasaki disease [82]. It has been suggested that sialylation of this receptor is critical for inhibitory effects in immune cells [83]. However, the study of Th17 cells in autoimmune encephalomyelitis model revealed that this process is dispensable for the immunomodulatory effect of IVIg treatment [84]. Despite these results, CP infusion may help the modulation of immune response via Fcγ receptors, and merits attention in the current management of COVID-19.

4.3. Dendritic cells

Dendritic cells (DCs) are key regulators of innate immunity and work as specialized antigen presenting cells. In vitro studies have shown that administration of IVIg may abrogate maturation of DCs, as well as a reduction in the production of IL-12. Interestingly, the production of IL-10 was enhanced [85]. In the study conducted by Sharma et al. [86], authors found that IVIg induced the production of IL-33 that subsequently expands IL-4-producing basophils. In this line, other study found that IVIg could promote the production of IL-4 and IL-13 which correlated with levels of IL-33 [87]. A Th2 cytokine-mediated downregulation of FcγRIIa and IFN-γR2 was suggested to be the most likely mechanisms for this phenomenon. Recently, it was found that IVIg activates β-catenin in an IgG-sialylation independent manner, which is critical for reducing inflammation [88].

Down regulation of HLA-II and costimulation molecules such CD86, CD80, and CD40 have been reported in DCs after stimulation with IVIg [85]. In patients with systemic lupus erythematosus, which show a high proinflammatory environment, administration of IVIg abrogated IFNα-mediated maturation
All together, data suggest that infusion of plasma from recovered COVID-19 donors may enhance anti-inflammatory properties of DCs, which could be critical in phases of excessive inflammatory stimuli in patients with COVID-19.

4.4. T cells

Despite the ability of enhancing Th2 via IL-33 in DCs [87], it has been described that IVlg modulates the balance between CD4+/CD8- T cells, as well as promoting proliferation and survival of Tregs. Treatment with IVlg seems to reduce antigenic presentation of T cells via the modulation and inhibition of DCs. This process was independent of IgG sialylation, monocytes or B cells [92].

In addition, patients treated with IVlg showed a reduction in Th1 cells and low levels of IFNγ and TNFα, with the increase of Th2 cytokines such as IL-4 and IL-10 [93]. Clinically, it has been demonstrated that patients with Influenza A (H1N1) treated with CP exhibited a reduction of IL-6 and TNFα [94], with an increase of IL-10 [46]. This support the notion of an anti-inflammatory effect of CP in subjects with acute viral infections.

Cytotoxicity is also regulated by administration of IVlg. In the study of Klehmet et al. [95], authors found that patients with chronic inflammatory demyelinating polyneuropathy treated with IVlg, showed reduction in CD8+ T cells with high levels of CD4+ T effector memory and T central memory cells. In another study, IVlg proved to reduce the activation of CD8+ T cells associated with a T-cell
receptor blockade, thus reducing the interaction between effector and target cells [96]. In subjects with Kawasaki disease, a high proportion of CD8\(^+\) was associated with resistance to IVlg, thus suggesting that these cells could be considered a predictive factor for IVlg response [97].

Recent studies have shown that IVlg reduces the proliferation of Th17 cells, as well as decreases the production of IL-17A, IL-17F, IL-21, and CCL20 [98,99]. In other study, IVlg appeared to modulate the Th17/Treg ratio which is associated with recurrent pregnancy loss [100]. It is plausible that CP may act in a similar way in patients with COVID-19 [28,29] (Fig. 1C).

4.5. B cells

B cells are critical in adaptive immunity via production of antibodies and cytokines. In patients with demyelinating polyneuropathy, administration of IVlg was associated with overexpression of Fc\(\gamma\)RIIB receptors on B cells [101,102]. IVlg abrogated TLR-9-dependent B cell responses. This was associated with IVlg inhibitions of NF-κB signaling pathway, reduction of CD25 and CD40 expression, and reduction of IL-6 and IL-10 production by B cells. This process seems to be regulated by SH2 domain–containing phosphatase 1 [103].

Proliferation and survival of B cells is mediated by the B cell–activating factor (BAFF). In the study conducted by Le Pottier et al. [104], authors found that IVlg contained NAbS for BAFF. This could explain the reduction in proliferation, as well as the increased rates of apoptosis of B cells. Regarding the latter process, it was found that anti-Fas (anti-CD95) antibodies, present in IVlg preparations, induced apoptosis in B cells [105].
In DCs, downregulation of costimulatory molecules following administration of IVIg has been observed. This is similar to B cells which exhibited a reduction in antigen-presentation activity secondary to IgG internalization, in concordance with a reduced IL-2 production by T cells [106]. Moreover, IVIg administration modulates B-cell receptor (BCR) signaling. In the study of Séité et al. [107], authors found that interaction between BCR and CD22 resulted in a down-regulation of tyrosine phosphorylation of Lyn and the B-cell linker proteins which resulted in a sustained activation of Erk 1/2 and arrest of the cell cycle at the G1 phase.

These mechanisms may account for immunomodulation of the inflammatory response in COVID-19 secondary to CP administration. As showed above, recent reports suggest the production of antiphospholipid antibodies in patients with COVID-19 together with an antiphospholipid-like syndrome [66], and the regulation of this cascade could be critical to avoid deleterious outcomes in these group of patients (i.e., thrombosis, disseminated intravascular coagulopathy).

4.6. Other immune cells

The major immunological factor suspected to be associated with inflammation and lung damage in COVID-19 is the activation of macrophages. It has been suggested that patients with COVID-19 may suffer from a macrophage activation syndrome-like disease associated to innate immune migration to lung tissues [28]. In this context, the inhibition of this immunological pathway may help to control excessive cytokine production and prevent pulmonary damage.
(i.e., fibrosis). This was recently supported by the study of Blanco-Melo et al. [108] who described an up regulation of chemokines for innate immune cells in ferrets as well as in patients with COVID-19. Interestingly, results suggest that this scenario mainly occurred in the first 7 days post infection, whereas at day 14th, other cytokines such as IL-6 and IL-1 persisted activated [108]. These data have critical therapeutic consequences.

In the study conducted by Kozicky et al. [109], authors found that macrophages treated with IVlg showed an increased production of IL-10, with a reduction in IL-12/23p40, thus suggesting the promotion of an anti-inflammatory macrophage profile. Although there is no evidence of macrophage pulmonary migration inhibition by IVlg, a study on induced peripheral neurotoxicity showed that this treatment reduced nerve macrophage infiltration in rats [110]. This observations deserves attention in those patients treated with CP-COVID-19 since they may account for the positive results encountered in critically ill patients with COVID-19 [38,39]. In this line, we argue for CP-COVID-19 administration in early stages of diseases to prevent innate immune cells migration and avoid lung damage.

5. Conclusions

CP is a safe and potentially effective strategy for the treatment of emerging and re-emerging pathogens, especially in those scenarios without proved antiviral agents or vaccines. IVlg and CP shared similar mechanisms of action. The potential antiviral and immunomodulatory effects of CP are currently evaluated
in COVID-19. According to the physiopathology of COVID-19 severe patients should be privileged over critical ones reduce mortality and improve outcomes.

Acknowledgements

The authors thank all the members of the CREA and the “CP-Covid-19 Group” for contributions and fruitful discussions.

Funding

This work was supported by Universidad del Rosario (ABN-011), Bogota, and Universidad CES (Office of Research and Innovation), Medellin, Colombia.

References

[6] Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus ADME, Fouchier RAM. Isolation of a novel coronavirus from a man with pneumonia in

[92] Issekutz AC, Rower D, Miescher S, Käsermann F. Intravenous IgG (IVIG) and subcutaneous IgG (SCIG) preparations have comparable inhibitory effect on T cell activation, which is not dependent on IgG sialylation, monocytes or B cells. Clin Immunol 2015;160:123–32. https://doi.org/10.1016/j.clim.2015.05.003.

[99] Maddur MS, Kaveri S V, Bayry J. Comparison of different IV Ig preparations on IL-17 production by human Th17 cells. Autoimmun Rev

Meregalli C, Marjanovic I, Scali C, Monza L, Spinoni N, Galliani C, et al. High-dose intravenous immunoglobulins reduce nerve macrophage...

Figure 1. Schematic representation of convalescent plasma components and its mechanisms of action. A. Main convalescent plasma components. B. Antiviral effects of NAbs. IgG and IgM are the main isotypes, although IgA may be also important, particularly in mucosal viral infections. Other non-NAbs may exert a protective effect. The humoral immune response is mainly directed towards spike (S) protein. C. Anti-inflammatory effects of CP include network of autoantibodies, and control of an overactive immune system (i.e., cytokine storm, Th1/Th17 ratio, complement activation and regulation of a hypercoagulable state) (see text for details).
<table>
<thead>
<tr>
<th>Author</th>
<th>Country</th>
<th>Study design</th>
<th>Viral Biology</th>
<th>Diagnosis</th>
<th>Individual included</th>
<th>Non-CP treatment</th>
<th>Previous clinical state CP</th>
<th>Dose protocol CP</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shen et al. (2020) [38]</td>
<td>China</td>
<td>Case series</td>
<td>COVID-19</td>
<td>RT-PCR</td>
<td>Intervention: 5</td>
<td>All patients received antiviral management during treatment.</td>
<td>Clinical deterioration</td>
<td>CP from the same donor</td>
<td>CP 200-250 ml two consecutive transfusions</td>
<td>CP 200 ml single dose CP 200 ml single dose</td>
<td>Improvement in viral load and increase in antibodies</td>
</tr>
<tr>
<td>Ye et al. (2020) [37]</td>
<td>China</td>
<td>Case series</td>
<td>COVID-19</td>
<td>RT-PCR</td>
<td>Intervention: 6</td>
<td>Not reported</td>
<td>Clinical deterioration</td>
<td>Unknown n</td>
<td>CP 200-250 ml two consecutive transfusions</td>
<td></td>
<td>Reduction of viral load and increase of SARS-CoV-2 IgG and IgM antibodies</td>
</tr>
<tr>
<td>Anh et al. (2020) [34]</td>
<td>South Korea</td>
<td>Case report</td>
<td>COVID-19</td>
<td>RT-PCR</td>
<td>Intervention: 2</td>
<td>Ribavirin, Methylprednisolone, hydroxychloroquine and empirical antibiotics</td>
<td>Clinical deterioration</td>
<td>Unknown n</td>
<td>Unknown n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soo et al. (2004) [40]</td>
<td>China</td>
<td>Retrospective comparison of cases</td>
<td>SARS-CoV</td>
<td>CDC Case Definition</td>
<td>Intervention: 15 control: 21</td>
<td>Intervention Group: Ribavirin, 3 doses Methylprednisolone (1-5g). Control group: Ribavirin, 4 or more doses of Methylprednisolone (1-5g).</td>
<td>Clinical deterioration</td>
<td>Unknown n</td>
<td></td>
<td>CP 200-400 ml days 11 and 42 after the onset of symptoms</td>
<td>Mortality, length of hospital stay, adverse events</td>
</tr>
<tr>
<td>Cheng et al. (2005) [41]</td>
<td>China</td>
<td>Case series</td>
<td>SARS-CoV</td>
<td>CDC case definition and serology</td>
<td>Unknown n</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mortality, length of hospital stay, adverse events</td>
</tr>
<tr>
<td>Ne et al. (2003) [5]</td>
<td>China</td>
<td>Case series</td>
<td>SARS-CoV</td>
<td>Unknown n</td>
<td>Intervention: 40</td>
<td>Unknown n</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td> </td>
</tr>
<tr>
<td>Yeh et al. (2005) [42]</td>
<td>Taiwan</td>
<td>Case series</td>
<td>SARS-CoV</td>
<td>Serology</td>
<td>Intervention: 3</td>
<td>Ribavirin, Moxifloxacin, Methylprednisolone</td>
<td>Clinical deterioration</td>
<td>Unknown n</td>
<td></td>
<td> </td>
<td>Mortality, antibodies, viral load, adverse events</td>
</tr>
<tr>
<td>Zhou et al. (2003) [43]</td>
<td>China</td>
<td>Case series</td>
<td>SARS-CoV</td>
<td>CDC case definition</td>
<td>Intervention: 1 control: 28</td>
<td>All patients received</td>
<td>Vulnerable</td>
<td></td>
<td></td>
<td></td>
<td> </td>
</tr>
<tr>
<td>Study (Year)</td>
<td>Country</td>
<td>Study Type</td>
<td>Virus</td>
<td>Diagnosis</td>
<td>Intervention(s)</td>
<td>Clinical Deterioration</td>
<td>CP Source</td>
<td>CP Dose</td>
<td>Length of Hospital Stay</td>
<td>Mortality</td>
<td>Intervention Group</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>------------</td>
<td>-------</td>
<td>-----------</td>
<td>-----------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>--------</td>
<td>-----------------------</td>
<td>-----------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Kong (2003) [44]</td>
<td>China (Hong Kong)</td>
<td>Case report</td>
<td>SARS-CoV</td>
<td>Clinical Diagnosis</td>
<td>Interventions: 1</td>
<td>Levofoxacin, Steroids, Mechanical ventilation, Antivirals, Steroids, Ventilation</td>
<td>Older adults</td>
<td>Clinical deterioration</td>
<td>CP from the same donor</td>
<td>Symptom onset</td>
<td>0% intervention group</td>
</tr>
<tr>
<td>Wong et al. (2003) [45]</td>
<td>China (Hong Kong)</td>
<td>Case report</td>
<td>SARS-CoV</td>
<td>WHO case definition</td>
<td>Interventions: 1</td>
<td>Ribavirin, Oseltamivir, Cefotaxime, Levofoxacin</td>
<td>Clinical deterioration</td>
<td>CP from the same donor</td>
<td>Symptom onset</td>
<td>250 ml CP 2 doses day 7 of onset of symptoms</td>
<td>0% intervention group</td>
</tr>
<tr>
<td>Ko et al. (2018) [35]</td>
<td>South Korea</td>
<td>Case series</td>
<td>MERS-CoV</td>
<td>RT-PCR</td>
<td>Interventions: 3</td>
<td>Steroids</td>
<td>Clinical deterioration</td>
<td>Unknown</td>
<td>CP unspecified dose</td>
<td>Antibody titers</td>
<td>0% intervention group</td>
</tr>
</tbody>
</table>

ARDS: Acute respiratory distress syndrome; CDC: Centers for disease control and prevention; COVID-19: Coronavirus disease 2019; CP: Convalescent plasma; CPAP: Continuous positive airway pressure; ICU: Intensive care unit; MERS: Middle East respiratory syndrome coronavirus; ml: Millilitres; NA: Not available; RT PCR: Real-time polymerase chain reaction; SARS-CoV: Severe acute respiratory syndrome coronavirus; USA: United States of America; WHO: World health organization. Taken and modified from [20].
Table 2. Associated adverse events to convalescent plasma in different epidemics.

<table>
<thead>
<tr>
<th>Author</th>
<th>Country</th>
<th>Viral Etiology</th>
<th>Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shen et al. (2020) [38]</td>
<td>China</td>
<td>COVID-19</td>
<td>None</td>
</tr>
<tr>
<td>Duan et al. (2020) [39]</td>
<td>China</td>
<td>COVID-19</td>
<td>Self-limited facial erythema in 2/10 patients. No major adverse events.</td>
</tr>
<tr>
<td>Ye et al. (2020) [37]</td>
<td>China</td>
<td>COVID-19</td>
<td>None</td>
</tr>
<tr>
<td>Anh et al. (2020) [34]</td>
<td>South Korea</td>
<td>COVID-19</td>
<td>None</td>
</tr>
<tr>
<td>Soo et al (2004) [40]</td>
<td>China</td>
<td>SARS-CoV</td>
<td>None</td>
</tr>
<tr>
<td>Cheng et al (2005) [41]</td>
<td>China</td>
<td>SARS-CoV</td>
<td>None</td>
</tr>
<tr>
<td>Nie et al. (2003) [5]</td>
<td>China</td>
<td>SARS-CoV</td>
<td>None</td>
</tr>
<tr>
<td>Yeh et al (2005) [42]</td>
<td>Taiwan</td>
<td>SARS-CoV</td>
<td>None</td>
</tr>
<tr>
<td>Zhou et al. (2003) [43]</td>
<td>China</td>
<td>SARS-CoV</td>
<td>None</td>
</tr>
<tr>
<td>Kong et al. (2003) [44]</td>
<td>China</td>
<td>SARS-CoV</td>
<td>None</td>
</tr>
<tr>
<td>Ko et al. (2018) [35]</td>
<td>South Korea</td>
<td>MERS-CoV</td>
<td>None</td>
</tr>
<tr>
<td>Hung et al. (2011) [46]</td>
<td>China</td>
<td>Influenza A(H1N1)</td>
<td>None</td>
</tr>
<tr>
<td>Chan et al. (2010) [47]</td>
<td>China</td>
<td>Influenza A(H1N1)</td>
<td>None</td>
</tr>
<tr>
<td>Yu et al. (2008) [48]</td>
<td>China</td>
<td>Influenza A(H5N1)</td>
<td>None</td>
</tr>
<tr>
<td>Kong et al. (2006) [49]</td>
<td>China</td>
<td>Influenza A(H5N1)</td>
<td>None</td>
</tr>
</tbody>
</table>

A. CONVALESCENT PLASMA

COVID-19
- Antibodies
- Anti-inflammatory cytokines
- Other factors?

SARS-CoV-2 recipient
- Albumin
- Protein C and S

B. ANTIVIRAL EFFECTS

- Neutralizing antibodies
 - IgG SARS-CoV-2
 - IgM SARS-CoV-2

SARS-CoV-2
- Spike Glycoprotein (S)
- M-Protein
- Hemagglutinin-esterase dimer (HE)
- Envelope (phospholipids)
- RNA and N protein
- E-protein

C. IMMUNOMODULATORY EFFECTS

- Pro-inflammatory cytokines
- Complement
 - C3a
 - C5a
- Autoantibodies

Neutralization of cytokines, complement, and autoantibodies
- Th1: IL-6↓, IL-5↑
- Th2: IL-4↑, IL-5↑
- Th17: IL-17A↓, IL-17F↓, IL-21↓
- Treg: IL-10↑

Adaptive immunity
- B cell
- FcγRIIB↓, Proliferation↓, Apoptosis↑

Innate immunity
- HLA-II↓, Endocytosis↓
- IL-12↓, IL-1RA↑, IL-10↑, IL-4↑

Figure 1