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Highlights 

 In ptCY-based allo-HCT, graft cryopreservation was not associated with significantly 

higher mortality 

 Cryopreserved grafts were not associated with significantly delayed hematopoietic 

recovery or higher acute GVHD risk.  

 Cryopreserved grafts were associated with lower chronic GVHD risk and inferior DFS 

rate, but these differences were of only borderline statistical significance. 
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ABSTRACT 

INTRODUCTION 

The COVID-19 pandemic has created significant barriers to timely donor evaluation, cell 
collection and graft transport for allogeneic hematopoietic stem cell transplantation (allo-HCT). 
To ensure availability of donor cells on the scheduled date of infusion, many sites now collect 
cryopreserve grafts before the start of pretransplant conditioning. Post-transplant 
cyclophosphamide (ptCY), is an increasingly used approach for graft-versus-host disease 
(GVHD) prophylaxis but the impact of graft cryopreservation on the outcomes of allo-HCT using 
ptCY is not known. Using the Center for International Blood and Marrow Transplant Research 
(CIBMTR) database, we compared the outcomes of HCT using cryopreserved versus fresh 
grafts in patients undergoing HCT for hematologic malignancy with ptCY. 

METHODS 

We analyzed 274 patients with hematologic malignancy undergoing allo-HCT from 2013-2018 
with cryopreserved grafts and ptCY. Eighteen received bone marrow and 256, peripheral blood 
grafts. These were matched for age, graft type, disease risk index (DRI) and propensity score to 
1,080 patients that underwent allo-HCT with a fresh graft. The propensity score, which is an 
assessment of the likelihood of receiving a fresh versus cryopreserved graft, was calculated 
logistic regression to account for the following: disease histology, Karnofsky Performance Score 
(KPS), HCT-comorbidity index, conditioning regimen intensity, donor type and recipient race. 
The primary endpoint was overall survival (OS). Secondary endpoints included acute and 
chronic graft-versus-host disease GVHD, non-relapse mortality (NRM), relapse/progression and 
disease-free survival (DFS). Because of multiple comparisons, only p-values <0.01 were 
considered statistically significant. 

RESULTS 

The two cohorts (cryopreserved versus fresh) were similar in patient age, KPS, diagnosis, DRI, 
HCT-comorbidity index, donor/graft source, and conditioning intensity. One-year probabilities of 
OS were 71.1% (95% confidence interval, 68.3-73.8%) with fresh grafts and 70.3% (64.6-
75.7%) with cryopreserved grafts (p=0.81). Corresponding probabilities of OS survival at two 
years were 60.6% (57.3-63.8%) and 58.7% (51.9-65.4%) (p=0.62). In matched pair regression 
analysis, graft cryopreservation was not associated with a significantly higher risk of mortality 
(Hazard Ratio for cryopreserved versus fresh [HR] =1.05, 95% confidence interval, 0.86-1.29, 
p=0.60). Similarly, rates neutrophil recovery (HR=0.91, 0.80-1.02, p=0.12), platelet recovery 
(HR=0.88, 0.78-1.00, p=0.05), grade 3-4 acute GVHD (HR=0.78, 0.50-1.22, p=0.27), NRM 
(HR=1.16, 0.86-1.55, p=0.32) and relapse/progression (HR=1.21, 0.97-1.50, p=0.09) were 
similar with cryopreserved versus fresh grafts. There were somewhat lower rates chronic GVHD 
(HR=0.78, 0.61-0.99, p=0.04) and DFS (HR for treatment failure=1.19, 95%CI=1.01-1.29, 
p=0.04) with graft cryopreservation that were of marginal statistical significance after adjusting 
for multiple comparisons. 

CONCLUSIONS 

Graft cryopreservation does not significantly delay hematopoietic recovery, increase acute 
GVHD risk or NRM, or decrease overall survival after all-HCT using ptCY. 

                  



INTRODUCTION 

Donor hematopoietic stem and progenitor cells for allogeneic hematopoietic cell 

transplantation (allo-HCT) are generally collected and infused fresh (i.e. without 

cryopreservation).1 Limited data in patients undergoing HLA-matched related donor (MRD) allo-

HCT using bone marrow (BM) as the graft source suggest that cryopreservation of the 

harvested marrow product does not impact hematopoietic recovery or risk of graft-versus-host 

disease (GVHD).2-5 Among recipients of peripheral blood (PB) allografts, some6 but not all 

studies7 report delayed platelet recovery with cryopreserved grafts, but these studies show no 

impact of cryopreservation of PB allografts on neutrophil recovery, GVHD or survival outcomes.  

The emergence of coronavirus disease 2019 (COVID-19) in Wuhan, China in December 

20198 and its rapid evolution into a pandemic caused not only a serious healthcare crisis, but 

also impacted the world economy and disrupted travel across international borders and within 

countries. These travel restrictions combined with potentially reduced HCT donor availability 

(due to infection, quarantine and constraints on travel to collection centers) and complex 

allograft processing logistics (donor assessment, collection, on-schedule delivery for fresh 

infusion) directly impact a transplant center’s ability to infuse fresh donor-cells into intended 

recipients on the scheduled day of transplantation. Recognizing these challenges, both the 

American Society for Transplantation and Cellular Therapy (ASTCT)9 and the National Marrow 

Donor Program (NMDP)10 initially issued strong recommendations that all unrelated donor 

(URD) products should be delivered and cryopreserved at transplant centers prior to initiation of 

patient conditioning. On March 23, 2020 the NMDP informed transplant centers that starting 

March 30, 2020, cryopreservation of URD grafts would be required prior to initiating conditioning 

on transplant recipients.10 Many transplant centers have instituted similar practices for HCT 

using cells from related donors. 

While published studies (all with limited patient numbers) suggest no significant impact 

of graft cryopreservation on outcomes of allo-HCT using conventional GVHD prophylaxis 

                  



platforms (e.g. calcineurin inhibitor based), no data are available on whether this strategy is 

feasible for HCT using post-transplant cyclophosphamide (ptCY)-based GVHD prophylaxis. 

Using the CIBMTR database we evaluated the outcomes of hematologic malignancy patients 

undergoing ptCY-based allo-HCT for hematologic malignancies with either fresh or 

cryopreserved grafts, to inform clinical practice during the ongoing COVID-19 pandemic. 

 

METHODS 

Data sources 

The CIBMTR® is a working group of more than 380 transplantation centers worldwide 

that contribute detailed data on HCT to a central coordinating center managed by the NMDP 

and the Medical College of Wisconsin (MCW). Participating centers are required to report all 

transplantations consecutively and compliance is monitored by on-site audits. Computerized 

checks for discrepancies, physicians' review of submitted data, and on-site audits of 

participating centers ensure data quality. Observational studies conducted by the CIBMTR are 

performed in compliance with all applicable federal regulations pertaining to the protection of 

human research participants. The NMDP, Institutional Review Board (IRB), which is the IRB of 

record for the CIBMTR’s database protocols, approved this study. 

The CIBMTR collects data at two levels: Transplant Essential Data (TED) and 

Comprehensive Report Form (CRF) data. TED-data include disease type, age, gender, pre-

HCT disease stage and chemotherapy-responsiveness, date of diagnosis, graft type, 

conditioning regimen, post-transplant disease progression and survival, development of a new 

malignancy, and cause of death. All CIBMTR centers contribute TED-data. More detailed 

disease and pre- and post-transplant clinical information is collected on a subset of registered 

patients selected for CRF data by a weighted randomization scheme. TED- and CRF-level data 

are collected pre-transplant, 100-days, and six months post-HCT and annually thereafter or until 

death. Data for the current analysis were retrieved from CIBMTR (TED and CRF) report forms, 

                  



considering all patients for whom a CRF 2006 form (which collects details of graft manipulation 

and composition) was submitted. 

 

Patients 

Included in this analysis are adults (≥18 years) undergoing an allo-HCT from 2013 

through 2018 for hematologic malignancies with ptCY (+/- calcineurin inhibitor and/or 

mycophenolate mofetil) as the GVHD prophylaxis. Diagnosis was limited to acute leukemias in 

first or second complete remission (CR1/CR2), chronic leukemias or myelodysplastic syndrome 

(with <5% blasts at HCT) and lymphomas. Donors included MRD, haploidentical related donors, 

matched URD or mismatched URD. Umbilical cord blood grafts, due to universal 

cryopreservation were not included.  

 

Definitions and Study Endpoints  

The primary endpoint was overall survival (OS); death from any cause was considered 

an event and surviving patients were censored at last contact. Secondary endpoints included 

hematopoietic recovery, acute and chronic GVHD, non-relapse mortality (NRM), 

progression/relapse and disease-free survival (DFS). NRM was defined as death without 

evidence of disease relapse/progression; relapse was considered a competing risk. 

Relapse/progression was defined as morphologic, cytogenetic, or molecular disease recurrence 

for leukemias and myeloid malignancies, and as progressive lymphoma after HCT or lymphoma 

recurrence after a CR; NRM was considered a competing risk. For DFS, a patient was 

considered a treatment failure at the time of relapse/progression or death from any cause. 

Patients alive without evidence of disease relapse or progression were censored at last follow-

up.  

Neutrophil recovery was defined as the first of 3 successive days with absolute 

neutrophil count (ANC) ≥500/µL after post-transplantation nadir. Platelet recovery was 

considered to have occurred on the first of three consecutive days with platelet count 20,000/µL 

                  



or higher, in the absence of platelet transfusion for 7 consecutive days. For neutrophil and 

platelet recovery, death without the event was considered a competing risk. The intensity of allo-

HCT conditioning regimens was categorized as myeloablative (MAC) or reduced-intensity/non-

myeloablative conditioning (RIC/NMA) using consensus criteria.11 Disease risk index (DRI) was 

assigned as previously reported.12 Acute GVHD13 and chronic GVHD14 were graded using 

standard criteria. For calculation of acute and chronic GVHD incidences, death without the 

event was considered a competing risk. 

 

Statistical analysis 

Two hundred seventy-seven patients were identified who met the eligibility criteria 

described above and who received cryopreserved grafts and 4,083 patients who met eligibility 

criteria and received fresh graft infusion. A mixed method of direct matching and propensity 

score matching was applied prior to analyses to obtain a control groups with similar clinical 

characteristics. The propensity score is the probability of a given patient to receive the 

cryopreserved graft, based on the observed covariates of the patient. The propensity score was 

predicted for each patient using logistic regression accounting for following risk factors: disease 

histology (acute myeloid leukemia vs. acute lymphocytic leukemia vs. chronic myeloid leukemia 

vs. chronic lymphocytic leukemia vs. myelodysplastic syndrome vs. non-Hodgkin lymphoma vs. 

Hodgkin lymphoma), Karnofsky Performance Score (KPS) (≥90 vs. <90%), HCT-comorbidity 

index (0 vs. 1-2 vs. ≥3), conditioning intensity (MAC vs. RIC/NMA), donor type (MRD vs. 

haploidentical related donor vs. 8/8 matched URD vs. ≤7/8 URD) and recipient race. Two 

patients with equal propensity scores meant they had similar probabilities of receiving a 

cryopreserved graft. The distributions of estimated propensity scores between cryopreserved 

and fresh grafts were examined. We then matched each recipient of a cryopreserved graft with 

controls receiving fresh grafts, by matching on four covariates including graft type (BM vs. PB), 

DRI (low risk vs. intermediate risk vs. high risk), recipient age (within 5-years) and propensity 

                  



score (within 1 standard deviation from pooled sample). The following procedure was adopted 

to find a maximum of four fresh graft controls for each cryopreserved graft cases: 

1. Identify all potential matched controls for each case. 

2. Assign the control with the smallest age difference with the case. If there were multiple 

controls with the same age difference, assign one at random. 

3. Repeating steps 1 and 2 four times, to identify 4 controls. 

As a result, we matched a total of 1,080 controls to 274 cases, including 266 cases 

matched to 4 controls, 3 matched to 3 controls, 2 matched to 2 controls, and 3 matched to a 

single control. Three cases with no matched controls were excluded. 

Patient-, disease- and transplant-related factors were compared between matched 

cases and controls using the Chi-square test for categorical and Mann-Whitney test for 

continuous variables. The Kaplan-Meier estimator was used to evaluate the probability of OS 

and DFS.15 Cumulative incidence rates were calculated for hematopoietic recovery, GVHD, 

NRM and relapse, while accounting for competing events.16 The marginal Cox model was 

applied to evaluate the main treatment effect, while adjusting for the potential correlation within 

each matched pair. The assumption of proportional hazards for the main risk factor 

(cryopreserved graft vs. fresh graft) for each outcome was tested by adding a time-dependent 

covariate. Hazard ratios (HR) (95%CI) and p-values were reported for each clinical outcomes of 

interest comparing the cryopreserved graft treatment group with the fresh graft group. Because 

of the large number of comparisons performed, only p-values < 0.01 were considered 

statistically significant a priori. All statistical analyses were performed using SAS version 9.4 

(SAS Institute Inc., Cary, NC).  

 

RESULTS 

Baseline Characteristics 

A total of 1,354 patients were included in the analysis, of whom 1,080 received fresh 

grafts and 274 patients received cryopreserved grafts. The baseline patient-, disease- and 

                  



transplantation-related characteristics are shown in Table 1. The two cohorts were similar in 

median patient age, gender, race, KPS, diagnosis, DRI, HCT-comorbidity index, donor/graft 

source, conditioning intensity and donor-recipient CMV serostatus. Acute leukemias constituted 

the most common diagnosis, and haploidentical related donors were the most common donor-

source across both cohorts. BM was the graft source in only ~6% of procedures. Median follow-

up of survivors was 24 months (range: 3-77 months) in the fresh graft cohort and 23 months 

(range: 3-68 months) in the cryopreserved graft cohort. 

 

Overall Survival  

Two-year OS rates were 60.6% (95%CI=57.3-63.8%) and 58.7% (95%CI=51.9-65.4%) 

with fresh and cryopreserved grafts, respectively, p=0.62 (Figure 1a, Table 2). In matched pair 

regression analysis, graft cryopreservation was not associated with a significantly higher risk of 

mortality (HR for cryopreserved vs. fresh=1.05, 95%CI=0.86-1.29%, p=0.60) (Table 3).   

 

Hematopoietic recovery and GVHD 

The day 28 cumulative incidences of neutrophil recovery were 93.8% (95%CI=92.3-

95.1%) and 93.3% (95%CI=90-96%) with fresh and cryopreserved grafts, respectively (p=0.80; 

Table 2). The corresponding median times to neutrophil recovery were 16 days (range: 5-69 

days) and 17 days (range: 8-48 days; p=0.05). The day 100 cumulative incidences of platelet 

recovery were 88.8% (95%CI=86.8-90.6%) and 87.7% (95%CI=83.4-91.4%) with fresh and 

cryopreserved grafts, respectively (p=0.62; Table 2). The corresponding median times to 

platelet recovery were 24 days (range: 1-321 days) and 26 days (range: 7-351 days; p=0.007). 

In matched pair regression analysis, graft cryopreservation was not associated with significantly 

delayed neutrophil (HR=0.91, 95%CI=0.80-1.02%, p=0.12) or platelet recovery (HR=0.88, 

95%CI=0.78-1.00%, p=0.05; Table 3). 

                  



The cumulative incidences of grade 2-4 acute GVHD at day 100 (Table 2) were 31.3% 

(95%CI=28.5-34.1%) and 34% (95%CI=28.5-39.8%) with fresh and cryopreserved grafts, 

respectively (p=0.40). Corresponding rates of grades 3-4 acute GVHD were 9.4% (95%CI=7.7-

11.3%) and 6.3% (95%CI=3.7-9.5%), respectively (p=0.07). In matched pair regression analysis 

(Table 3), the two cohorts had similar risks of grade 2-4 (HR=1.10, 95%CI=0.87-1.38%, p=0.43) 

and grade 3-4 acute GVHD (HR=0.78, 95%CI=0.50-1.22%, p=0.27). The cumulative incidences 

of chronic GVHD at 1-year (Figure 1b, Table 2) were 30.7% (95%CI=27.9-33.5%) and 26.8% 

(95%CI=21.5-32.5%) with fresh and cryopreserved grafts, respectively (p=0.22). In matched 

pair regression analysis (Table 3), cryopreserved grafts were associated with a lower risk of 

chronic GVHD (HR=0.78, 95%CI=0.61-0.99%) but this was of only borderline statistical 

significance (p=0.04). 

 

NRM, relapse/progression and DFS 

The 2-year rates of NRM were 19.0% (95%CI=16.5-21.5%) and 22.0% (95%CI=16.8-

27.7%) with fresh and cryopreserved grafts, respectively (p=0.32). Corresponding rates of 

relapse/progression were 30.7% (95%CI=27.7-33.7%) and 36.3% (95%CI=29.9-42.9%) 

(p=0.13) and corresponding rates of DFS were 50.4% (95%CI=47-53.7%) and 41.7% 

(95%CI=35-48.6%) (p=0.03) (Table 2). In matched pair regression analysis (Table 3), the HRs 

for NRM (HR=1.16, 95%CI=0.86-1.55%, p=0.32) and relapse/progression (HR=1.21, 

95%CI=0.97-1.50%, p=0.09) were not statistically significant while the HR for treatment failure 

(inverse of DFS) was of borderline significance (HR=1.19, 95%CI=1.01-1.29, p=0.04). 

   

DISCUSSION   

Prospective, randomized data comparing outcomes of ptCY-based allo-HCT using fresh 

versus cryopreserved grafts are not available. Using the CIBMTR database, we evaluated both 

approaches retrospectively, using available data to adjust for known covariates. The most 

                  



important finding our analysis is that, OS out to two years was virtually identical with fresh and 

cryopreserved grafts. Second, there was no evidence of significantly delayed hematopoietic 

recovery or higher risks of either acute or chronic GVHD with cryopreservation. Marginal 

increases in relapse/progression and marginal decreases in chronic GVHD and DFS are of 

uncertain significance given the multiple comparisons in the study and the fact that this was not 

a randomized study. In fact, a key piece of information was unavailable to us, which is the 

reason that these grafts were cryopreserved. One can reasonably assume that this was not a 

random decision. While some delays might be precipitated by donor scheduling issues, many 

were likely influenced by clinical events requiring delay in the transplant and that these events 

themselves might be indicators of prognosis (e.g. delay because of need for chemotherapy to 

achieve better pretransplant disease control). Given this background, the very similar survival 

outcomes are particularly reassuring. 

A rapidly growing body of literature shows good outcomes of ptCY-based allo-HCT in 

patients with both myeloid17-20 and lymphoid malignancies,21-25 validating the seminal 

observations from the Johns Hopkins group.20 Administration of ptCY potentially mitigates the 

risk of GVHD by targeting alloreactive T-cells rapidly proliferating early after stem cell infusion, 

and by relatively sparing regulatory T-cells and leaving unaffected the non-dividing 

hematopoietic stem and progenitor cells.20 Whether the proliferation kinetics of thawed 

alloreactive T-cells are different from fresh cells is not known. Murine data suggest that freeze 

and thaw of regulatory T-cells results in loss of CD62L expression and a reduced capacity to 

protect against GVHD.26 In addition, limited data indicate that cryopreservation can increase the 

sensitivity of porcine PB mononuclear cells (stimulated by phorbol myristate acetate) for IFN-

gamma production, but not for interleukin-6 production.27 Despite these preclinical observations, 

our analysis did not show any clinically relevant differences in hematopoietic recovery kinetics, 

acute GVHD risk or OS between fresh vs. cryopreserved grafts for patient undergoing ptCY-

based allo-HCT. Limited data in allo-HCT (with non ptCY-based GVHD prophylaxis) using either 

BM2-5 or PB6,7 as graft source, also show no impact of cryopreservation on hematopoietic 

                  



recovery, GVHD or survival outcomes. Though of uncertain clinical significance, the 

observations of lower chronic GVHD and DFS warrants further investigation, especially probing 

the impact on freeze-thaw cycle on functional profile of immune effector cells.  However, in the 

ongoing COVID-19 pandemic, necessitating cryopreservation of all URD grafts and the majority 

of related donor products, our data do not show a net safety signal against using ptCY-based 

platforms with frozen products. In this ongoing global outbreak, the ability to cryopreserve 

allografts has obvious logistical advantages; the most important being the ability to secure a 

graft before myeloablative therapy in a transplant recipient. Even under normal circumstances, it 

is sometimes advantageous to ensure availability of an optimal stem cell dose before the start of 

conditioning (e.g., in the setting of major donor/recipient weight discrepancy and/or advanced 

donor age).  

Our current analysis, also underscore the value of observational transplant registries like 

CIBMTR, that can be quickly leveraged to examine critical clinical questions to inform practice 

and improve patient care, even in unexpected emergencies. We must acknowledge the 

limitations of our analysis. Despite propensity score matching, our analysis cannot adjust for 

unknown clinical parameters influencing the decision to use cryopreservation. We cannot 

assess the impact of cryopreservation on graft viability (compared to a fresh graft) or examine 

functional characteristics of thawed immune effector cells. We also acknowledge that chronic 

GVHD rates across both cohorts in the current analysis are higher than those originally reported 

with ptCY,20 likely a reflection of increased use of PB grafts in clinical practice.28 Bone marrow 

grafts were underrepresented in our study, and thus we suggest caution in interpreting these 

results.  

In conclusion, our analysis provides evidence that for patients undergoing ptCY-based 

allo-HCT, cryopreservation of donor allografts, though not fully understood, appear safe and 

thus suitable for patients during the current worldwide crisis, and perhaps in other settings  more 

broadly. 
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Table 1. Baseline characteristics of propensity score matched patient population (2013-

18). 

Characteristic Fresh graft 

Cryopreserved 

graft P Value 

No. of patients 1080 274  

Median age at transplant, yrs (range) 52 (19-80) 55 (22-75) 0.33 

Male gender (%) 620 (57.4) 163 (59.5) 0.53 

Karnofsky performance score ≥90 (%) 536 (49.6) 137 (50) 0.71 

Not reported 13 (1.2) 5 (1.8)  

Race - no. (%)   0.98 

Caucasian 738 (68.3) 187 (68.2)  

African-American 205 (19) 53 (19.3)  

Others 66 (6.1) 15 (5.5)  

Not reported 71 (6.6) 19 (6.9)  

Disease (%)   0.66 

Acute myeloid leukemia 431 (39.9) 107 (39.1)  

Acute lymphoblastic leukemia 228 (21.1) 55 (20.1)  

Chronic leukemias 78 (7.2) 28 (10.2)  

Myelodysplastic syndrome 172 (15.9) 46 (16.8)  

Lymphoma 171 (15.9) 38 (13.8)  

Disease risk index (%)   1.00 

Low 114 (10.6) 29 (10.6)  

Intermediate 715 (66.2) 181 (66.1)  

High 251 (23.2) 64 (23.4)  

HCT-CI (%)   0.17 

0 192 (17.8) 36 (13.1)  

1-2 324 (30) 90 (32.8)  

≥3 564 (52.2) 148 (54)  

Donor/recipient CMV serostatus (%)   0.41 

-/+ 289 (26.8) 76 (27.7)  

Other combinations 786 (72.8) 197 (71.9)  

Not reported 5 (0.5) 1 (0.4)  

Conditioning intensity (%)   0.80 

                  



Characteristic Fresh graft 

Cryopreserved 

graft P Value 

Myeloablative 515 (47.7) 133 (48.5)  

Reduced-intensity/non-myeloablative 565 (52.3) 141 (51.5)  

Donor type (%)   0.18 

Matched related donor 152 (14.1) 49 (17.9)  

Haploidentical related donor 659 (61) 169 (61.7)  

8/8 unrelated donor 182 (16.9) 34 (12.4)  

≤7/8 unrelated donor 87 (8.1) 22 (8)  

Graft type (%)   1.00 

Bone marrow (BM) 71 (6.6) 18 (6.6)  

Peripheral blood (PB) 1009 (93.4) 256 (93.4)  

TNC dose infused in BM grafts (x108/kg 

recipient body weight), median (range) 

3.1 (1.2-26.3) 2.9 (1.8-4.6) 0.85 

CD34+ cell dose infused in PB grafts  

(x106/kg recipient body weight), median 

(range) 

5.3 (1-24.5) 5.2 (1.1-13.7) 0.03 

Abbreviations: CMV=cytomegalovirus; HCT-CI=hematopoietic cell transplantation-

comorbidity index; TNC=total nucleated cells 

 

 

                  



Table 2. Univariate outcomes of matched population. 

 Fresh (N = 1080) Cryopreserved (N = 274)  

Outcomes N Prob (95% CI) N Prob (95% CI) P Value 

Neutrophil recovery 1075  270   

28-day  93.8 (92.3-95.1)%  93.3 (90-96)% 0.80 

Platelet recovery 1076  270   

100-day  88.8 (86.8-90.6)%  87.7 (83.4-91.4)% 0.62 

Grade 2-4 acute GVHD 1040  271   

100-day  31.3 (28.5-34.1)%  34 (28.5-39.8)% 0.40 

Grade 3-4 acute GVHD 1040  271   

100-day  9.4 (7.7-11.3)%  6.3 (3.7-9.5)% 0.07 

Chronic GVHD 1077  272   

1-year  30.7 (27.9-33.5)%  26.8 (21.5-32.5)% 0.22 

2-year  36.4 (33.4-39.6)%  29.5 (23.8-35.5)% 0.04 

Relapse/Progression 1062  273   

1-year  24.1 (21.6-26.8)%  24.7 (19.7-30.1)% 0.85 

2-year  30.7 (27.7-33.7)%  36.3 (29.9-42.9)% 0.13 

Non-relapse mortality 1062  273   

1-year  15.8 (13.7-18.1)%  16.9 (12.6-21.7)% 0.67 

2-year  19 (16.5-21.5)%  22 (16.8-27.7)% 0.32 

Disease-free survival 1062  273   

1-year  60 (57-63)%  58.4 (52.4-64.3)% 0.63 

2-year  50.4 (47-53.7)%  41.7 (35-48.6)% 0.03 

Overall survival 1080  274   

1-year  71.1 (68.3-73.8)%  70.3 (64.6-75.7)% 0.81 

2-year  60.6 (57.3-63.8)%  58.7 (51.9-65.4)% 0.62 

 

 

 

 

 

 

 

 

                  



Table 3. Matched pair analysis by marginal Cox model 

Outcomes 

Cryopreserved 

graft 

HR (95% CI) 

Fresh graft  

HR (Reference) 
P-value 

Neutrophil recovery  0.91 (0.80-1.02) 1 0.12 

Platelet recovery 0.88 (0.78-1.00) 1 0.05 

Grade 2-4 acute GVHD 1.10 (0.87 -1.38) 1 0.43 

Grade 3-4 acute GVHD 0.78 (0.50-1.22) 1 0.27 

Chronic GVHD 0.78 (0.61-0.99) 1 0.04 

Relapse/progression 1.21 (0.97-1.50) 1 0.09 

Non-relapse mortality 1.16 (0.86-1.55) 1 0.32 

Disease-free survival 1.19 (1.01 -1.40) 1 0.04 

Overall survival 1.05 (0.86-1.29) 1 0.60 

 

                  



Figure Legend:  

Figure 1. Outcomes of post-transplant cyclophosphamide based allogeneic transplant patients 

receiving ether fresh or cryopreserved grafts. 1a. Overall survival, 1b. Cumulative incidence of 

chronic GVHD.  

 

 

                  


